shaking table test
Recently Published Documents


TOTAL DOCUMENTS

757
(FIVE YEARS 242)

H-INDEX

28
(FIVE YEARS 7)

2022 ◽  
Vol 154 ◽  
pp. 107140
Author(s):  
Li fang Pai ◽  
Hong gang Wu ◽  
Wei Guan ◽  
Hong Wei ◽  
Lin Tang

2022 ◽  
Vol 172 ◽  
pp. 108866
Author(s):  
Jinzhi Wu ◽  
Jianhua Zheng ◽  
Guojun Sun ◽  
Miao Feng

2022 ◽  
Vol 189 ◽  
pp. 107107
Author(s):  
Gui-bo Nie ◽  
Chen-xiao Zhang ◽  
Zhi-yong Wang ◽  
Wei-dan Xu ◽  
Yu-jie Shi

2022 ◽  
pp. 136943322110700
Author(s):  
Wenxue Zhang ◽  
Lijun Su ◽  
Cheng Zhang ◽  
Yongrui Zheng ◽  
Weifeng Yang

The seismic requirements of piers with fixed bearings (the fixed pier) for continuous girder bridges are relatively high, while the potential seismic capabilities of piers with sliding bearings (the sliding piers) are not fully utilized. To solve this contradiction, a new type of winding rope shock absorption device activated by a fluid viscous damper (WRD-D) was proposed. The WRD-D was installed on the top of the sliding piers, and the both ends of a fluid viscous damper were connected to the superstructure by winding ropes. During an earthquake, the damping force rises with the increase of relative speed between the sliding piers and the superstructure, activating the WRD-D and producing large frictional resistance, subsequently causing the sliding piers and the fixed pier to bear the seismic load cooperatively. In this study, the working mechanism of the WRD-D was researched. The shaking table test of a scaled continuous girder bridge model employing the WRD-D was conducted. The test results reveal that the WRD-D can effectively reduce the seismic requirements of the fixed pier and the superstructure displacements.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Dan Ye ◽  
Shangzhi Yin ◽  
Yihong Wang ◽  
Taian Zuo

A new arc-consistent viscous-spring artificial boundary (ACVAB) was proposed by changing a traditional flat artificial boundary based on the theory of viscous-spring artificial boundaries. Through examples, the concept underpinning the establishment and specific setting of the boundary in the finite element software were described. Through comparison with other commonly used artificial boundaries in an example for near-field wave analysis using the two-dimensional (2D) half-space model, the reliability of the ACVAB was verified. Furthermore, the ACVAB was used in the numerical analysis of the effects of an earthquake on underground structures. The results were compared with the shaking table test results on underground structures. On this basis, the applicability of the ACVAB to a numerical model of seismic response of underground structures was evaluated. The results show that the boundary is superior to common viscous-spring boundaries in terms of accuracy and stability, and therefore, it can be used to evaluate radiation damping effects of seismic response of underground structures and is easier to use.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Yu Liang ◽  
Honggang Wu ◽  
Tianwen Lai ◽  
Hao Lei ◽  
Mingzhe Zhu ◽  
...  

In order to further understand the instability mechanism and geohazard causation when the main sliding path of the slope body is parallel to the path of the bridge, the corresponding bridge-landslide parallel system is constructed for shaking table tests. This paper summarizes the combination forms of bridge-landslide model under different position and focused on the slope body located above the bridge deck. Firstly, based on the shaking table test results of El Centro (1940), the failure behavior of bridge-landslide parallel system was evaluated, and the changes of acceleration and deformation of bridge pile were subsequently analyzed. Then, the interaction bridge structure and sliding body were explained by the spectral features. The main conclusions are as follows. First, in the model test, the landslide belongs to the thrust-type landslide. Due to the barrier function of the bridge, the main failure site of landslide occurs in the middle and trailing edge of slope body. At the same time, the acceleration value of earthquake waves is 0.3 g, which is the key to this variation. Second, the acceleration response of the measuring points on the bridge pile and landslide increases with the increase of ground elevation. If the slope structure is damaged severely, the deformation response of weak interlayer is inconsistent with the surrounding soil structure. Third, with the increase of excitation power, the dominant frequency of bridge-landslide parallel system gradually transitions from low to high frequency rate, and the interaction of the parallel system weakens the influence of river direction on frequency. Finally, under the same working condition, the dynamic response of the measuring points has obvious regularity with the change of situation. But the response of the same points is not regular due to the different earthquake excitation intensity.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012057
Author(s):  
Laixiu Cheng ◽  
Gumai Chen

Abstract For the situation of lacking research on micro-pile with predrilled oversize hole, the key part of semi-integral abutment bridge, the micro-pile-soil interaction shaking table test is carried out by considering the reaming pore diameter, depth, packing and other parameters in the end of the micro-pile to obtain the acceleration, pile moment, displacement and pile-system response frequency and other basic dynamic response and dynamic interaction law. Results show that: 1) the change of predrilled-hole parameters has litter effect on the dynamic properties of soil outside oversize hole; 2) The change of predrilled-hole parameters can cause the change of structural frequency, so led to the change of inertia force of pile head; 3) Inertial interaction has an important influence on the response of the upside part of pile and little influence in the downside part (lower than 15D). These conclusions will provide reference for dynamic response of interaction between pile with predrilled oversize hole and soil and make contribution to the practical application and designing of micro-pile with predrilled oversize hole.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012020
Author(s):  
Yaodong Xue ◽  
Yongfeng Cheng ◽  
Zhicheng Lu ◽  
Zhubing Zhu ◽  
Haibo Wang ◽  
...  

Abstract At present, the seismic performance of UHV transformers is mostly studied without considering the interaction between soil and superstructure. In practical engineering, the transformer is installed on the foundation slab buried in the soil. Under the action of earthquake, the interaction between the soil and the structure changes the earthquake response of the upper electrical structure. In order to study the influence of the interaction between soil and structure on the seismic performance of the transformer, the shaking table test method of simulated earthquake is used, and the shaking table test of UHV transformer with scale ratio of 1:4 is carried out in class I field conditions. The dynamic characteristics of the equipment and the seismic response of the bushing under different test conditions are obtained respectively. The test results show that when the peak acceleration is 1.2g, the acceleration response at each measuring point on the box is 1.63-1.92 times that when the peak acceleration is 0.4g. With the increase of seismic peak acceleration, the acceleration and strain increase of high voltage bushing are greater than that of medium and low voltage bushing, which has a great influence on the seismic response of high voltage bushing. The research conclusion can provide reference for substation engineering design.


Sign in / Sign up

Export Citation Format

Share Document