seismic force
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 77)

H-INDEX

15
(FIVE YEARS 3)

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Han-Dong Liu ◽  
Jia-Xing Chen ◽  
Zhi-Fei Guo ◽  
Dong-Dong Li ◽  
Ya-Feng Zhang

The failure of locked segment-type slopes is often affected by rainfall, earthquake, and other external loads. Rainfall scours the slope and weakens the mechanical properties of rock-soil mass. At the same time, rainfall infiltrates into cracks of slope rock mass. Under the action of in situ stress, hydraulic fracturing leads to the development and expansion of rock cracks, which increases the risk of slope instability. Under seismic force, the slope will be subjected to large horizontal inertial force, resulting in slope instability. In this paper, a self-developed loading device was used to simulate the external loads such as rainfall and earthquake, and the model tests are carried out to study the evolution mechanism of landslide with retaining wall locked segment. Three-dimensional laser scanner, microearth pressure sensors, and high-definition camera are applied for the high-precision monitoring of slope shape, deformation, and stress. Test results show that the retaining wall locked segment has an important control effect on landslide stability. The characteristics of deformation evolution and stress response of landslide with retaining wall locked segment are analyzed and studied by changing the slope shape, earth pressure, and the displacement cloud map. The evolutionary process of landslide with retaining wall locked segment is summarized. Experimental results reveal that as the landslide with retaining wall locked segment is at failure, the upper part of the landslide thrusts and slides and the retaining wall produces a locking effect; the middle part extrudes and uplifts, which is accompanied with shallow sliding; and compression-shear fracture of the locked segment leads to the landslide failure.


2021 ◽  
Vol 21 (6) ◽  
pp. 247-255
Author(s):  
Changho Sun ◽  
Ickhyun Kim

Rubber bearings are widely used for seismic retrofit of bridges because they reduce the seismic force by making the vibration period of the bridge longer and distributing the seismic force to all the piers. However, they have the disadvantage of being easily aged compared to steel bearings as well as having variations in the shear stiffness. The shear characteristic changes in the blended rubber for the rubber bearings were analyzed, specifically, the aging accelerated by heat. The higher the aging temperature and longer the exposure time, the greater is the maximum stress and strain at that time, and the greater is the shear stiffness. This implies that the seismic performance gradually deteriorates due to aging as the service period becomes longer. This can provide the basis for the mechanical model of the aging bearing.


Author(s):  
Lusine Gurgen Karapetyan ◽  
Tigran Vardan Ter-Poghosyan

The article touches upon the comparative analysis of bearing system calculations of a multi-storey residential building with site cast reinforced concrete frame and shear wall constructed by two different methods.  In the calculation models, the shear walls are constructed from site cast reinforced concrete in the first case, and from three-layer sound and thermal insulating bearing panels in the second. The calculations have been made considering the impact of the seismic force. According to the calculation results, the dynamic parameters of the bearing systems of the buildings and the economic efficiency indicators have been compared. Considering the fact that in the recent years three-layer sound and thermal insulating panels have been widely used in the world, the study attempted to reveal the efficiency of using such panels in the Republic of Armenia.


2021 ◽  
Vol 9 ◽  
Author(s):  
Biao Zhang ◽  
Yi Jiang ◽  
Hao Cheng ◽  
Ze Liu

In order to study the three-dimensional stability problem of the saturated soft clay slope under earthquake loads, based on the three-dimensional rotation failure model, the seismic force was introduced into the calculation by the quasi-static method. The work rate of external loads and the internal energy dissipation rate of the saturated soft clay slope were calculated using the upper bound method of limit analysis, and the analytical solution of stability coefficient of saturated soft clay slopes was derived based on the fictitious power principle. By virtue of the exhaust algorithm, the optimal solution of stability coefficient of saturated soft clay slopes was obtained. The influence of the slope angle and the horizontal and vertical seismic forces on the stability coefficient of saturated soft clay slope was analyzed. The results show that the slope angle has a great influence on the stability coefficient, and the relative difference is up to 35.7%. Therefore, the stability coefficient of saturated soft clay slopes can be effectively increased by a proper slope setting. The horizontal and vertical seismic forces also have a significant influence on the stability of saturated soft clay slopes. The relative differences of the stability coefficient under horizontal and vertical seismic forces are as high as 41 and 14.7%, respectively. If they are ignored, the stability coefficient of saturated soft clay slopes will be seriously overestimated. It is suggested that the effects of horizontal and vertical seismic forces must be considered simultaneously in the seismic design of saturated soft clay slopes.


2021 ◽  
Author(s):  
Kou Miyamoto ◽  
Jun Iba ◽  
Koichi Watanabe ◽  
Ken Ishii ◽  
Masaru Kikuchi

Abstract This paper verifies the model of high-static-low-dynamic stiffness (HSLDS) for seismic isolation based on an experiment. Seismic isolation is widely used in several countries. Moreover, the number of seismically isolated buildings has rapidly increased in these few decades. Seismic isolation extends a natural period of a building and decreases the absolute acceleration to re-duce a seismic force. However, as there is a trade-off between displacement and absolute acceleration, it might result in the maximum displacement be-yond an allowable range. HSLDS is nonlinear, and its restoring force can be approximated cube of a displacement. Thus, HSLDS applies a large restoring force for significant displacement, and the force is small for small perturbation around an equilibrium position. To improve the control performance of seismic isolation for displacement, we apply HSLDS for seismic isolation. This paper conducts an experiment and compares the results with a time-history analysis to verify a numerical model of HSLDS


Author(s):  
Shoma Kitayama ◽  
Huseyin Cilsalar

AbstractThis paper investigates the seismic loss assessment of seismically isolated and non-isolated buildings with steel moment or braced frames, designed by the seismic design standard of ASCE/SEI 7-16. The seismic loss is calculated from the damage to structural and non-structural components, as well as the demolition and the collapse of buildings. This study demonstrates that the expected annual losses for seismically isolated buildings are half or less than half of those calculated for non-isolated buildings. These losses depend on the types of seismic isolation systems and seismic force resisting systems used. Among the cases of isolated buildings studied in this paper, the most cost-effective systems are found to be the buildings designed by minimum strength requirement in ASCE/SEI 7-16 and with isolators which have displacement capacity 1.5 times larger than the minimum required in ASCE/SEI 7-16, in terms of expected annual losses. This study also compares the results obtained from different approaches of selection and scaling of ground motions. The following research finds that when Incremental Dynamic Analysis approach with far-field ground motion set in FEMA P695 is used, the computed expected total annual losses become doubled from the Conditional Spectra approach.


2021 ◽  
Vol 6 (3) ◽  
pp. 293-302
Author(s):  
B. S. Ordobaev ◽  
B. S. Matozimov ◽  
S. S. Abdikeeva

The article aims to assess possibilities of using probabilistic methods for calculating seismic resistan of buildings based on the laws of structural mechanics. The design schemes and models of buildings rigidly embedded in the base and with a seismic isolation device are described. Formulas developed on the basis of the law of energy conservation, namely the seismodynamic law, which allow to estimate the coefficient of dynamism, are presented. It is proposed to abandon the main modes of vibration in the calculations, i.e. the coefficient ηir of the waveform and the vibration frequency of the residential building and the foundation during earthquakes. Shear and bending calculations of a residential building are based on the design model developed. The values of seismic force are determined by the first and last modes of vibration. Based on these values, it is proposed to calculate internal forces and deformations in the bearing structures of buildings using the methods of structural mechanics.


Author(s):  
Syed Zubair Uddin

Abstract: The tube in tube structure is one of the type that is been broadly used as structural system for tall structures. Considering the lateral loads due to the seismic force it gives more stiffness and gives more strength to the high-rise structures. Lateral loads are shared between the inner and outer tubes our aim is to make the structure stiff by its connectivity and comparing them by providing drops to the waffle. By adding tube in tube to the flat slab and waffle slab, concept is they both does not have the beams such that to know the comparison of both the models. This both models have been designed using e-tabs software and the dimensions, limitations are been taken from the provision Indian standard code book. Keywords: High-rise building, tube in tube, Response spectrum analysis.


2021 ◽  
Vol 2 (4) ◽  
pp. 13-17
Author(s):  
Radhwane Boulkhiout

Soil compaction is a considerable construction activity to ensure safety and durability, notably in the transportation industry. This technique of compaction increases soil bulk density and soil strength, while decreases porosity, aggregate stability index, soil hydraulic conductivity, and nutrient availability, thus reduces soil health. Consequently, it lowers crop performance via stunted aboveground growth coupled with reduced root growth. Therefore, if the characteristics of the soil are changed, it will affect the response of the structures. In this work, the effect of improving soil characteristics by compaction techniques on the dynamic response of foundations and structures, taking into consideration the effect of soil-structure interaction was determined. The dynamic response of foundations is presented by the impedances functions, which are determined numerically by the CONAN program, based on the cone method. In addition, the response of the structure will be presented according to the lateral displacement in each level of it. This motion vector is a function of the forces in each level; for this, the equivalent static method was applied, which allows to calculate the seismic force at the base and its distribution on the height of the structure. The results obtained show the efficiency of soil densification on the seismic response of MDOF frames.


Sign in / Sign up

Export Citation Format

Share Document