scholarly journals Effect of Nebulizer Designs on Aerosol Delivery During Non-Invasive Mechanical Ventilation: A Modeling Study of In Vitro Data

2017 ◽  
Vol 3 (1) ◽  
pp. 233-241 ◽  
Author(s):  
Haitham Saeed ◽  
Ahmed A. Elberry ◽  
Abeer Salah Eldin ◽  
Hoda Rabea ◽  
Mohamed E. A. Abdelrahim
2017 ◽  
Vol 40 ◽  
pp. 28-34 ◽  
Author(s):  
Hadeer S. Harb ◽  
Ahmed A. Elberry ◽  
Hoda Rabea ◽  
Maha Fathy ◽  
Mohamed E.A. Abdelrahim

Author(s):  
Haitham Saeed ◽  
Antonio M. Esquinas ◽  
Bruno Gil Gonçalves ◽  
Mohamed E.A. Abdelrahim

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2898
Author(s):  
Giancarlo Ceccarelli ◽  
Massimiliano Marazzato ◽  
Luigi Celani ◽  
Francesca Lombardi ◽  
Alessandra Piccirilli ◽  
...  

Background: We previously reported that severe COVID-19 patients had higher chances of survival and a reduced risk of developing respiratory failure when administered with the probiotic formulation SLAB51. This study aimed to investigate further bacteriotherapy mechanisms and how early they are activated. Methods: We performed an analysis on the blood oxygenation parameters collected in sixty-nine severe COVID-19 patients requiring non-invasive oxygen therapy and presenting a CT lung involvement ≥50%. Twenty-nine patients received low-molecular-weight heparin, azithromycin and Remdesivir. In addition, forty subjects received SLAB51. Blood gas analyses were performed before the beginning of treatments and at 24 h. Results: The patients receiving only standard therapy needed significantly increased oxygen amounts during the 24 h observation period. Furthermore, they presented lower blood levels of pO2, O2Hb and SaO2 than the group also supplemented with oral bacteriotherapy. In vitro data suggest that SLAB51 can reduce nitric oxide synthesis in intestinal cells. Conclusions: SARS-CoV-2 infected patients may present lesions in the lungs compromising their gas exchange capability. The functionality of the organs essential for these patients’ survival depends mainly on the levels of pO2, O2Hb and SaO2. SLAB51 contains enzymes that could reduce oxygen consumption in the intestine, making it available for the other organs.


Pneumologie ◽  
2017 ◽  
Vol 71 (S 01) ◽  
pp. S1-S125
Author(s):  
EJ Soto Hurtado ◽  
P Gutiérrez Castaño ◽  
JJ Torres ◽  
MD Jiménez Fernández ◽  
M Pérez Soriano ◽  
...  

1993 ◽  
Vol 21 (2) ◽  
pp. 173-180
Author(s):  
Gunnar Johanson

This presentation addresses some aspects of the methodology, advantages and problems associated with toxicokinetic modelling based on in vitro data. By using toxicokinetic models, particularly physiologically-based ones, it is possible, in principle, to describe whole body toxicokinetics, target doses and toxic effects from in vitro data. Modelling can be divided into three major steps: 1) to relate external exposure (applied dose) of xenobiotic to target dose; 2) to establish the relationship between target dose and effect (in vitro data, e.g. metabolism in microsomes, partitioning in tissue homogenates, and toxicity in cell cultures, are useful in both steps); and 3) to relate external exposure to toxic effect by combining the first two steps. Extrapolations from in vitro to in vivo, between animal and man, and between high and low doses, can easily be carried out by toxicokinetic simulations. In addition, several factors that may affect the toxic response by changing the target dose, such as route of exposure and physical activity, can be studied. New insights concerning the processes involved in toxicity often emerge during the design, refinement and validation of the model. The modelling approach is illustrated by two examples: 1) the carcinogenicity of 1,3-butadiene; and 2) the haematotoxicity of 2-butoxyethanol. Toxicokinetic modelling is an important tool in toxicological risk assessment based on in vitro data. Many factors, some of which can, and should be, studied in vitro, are involved in the expression of toxicity. Successful modelling depends on the identification and quantification of these factors.


2021 ◽  
Vol 9 ◽  
pp. 2050313X2110349
Author(s):  
Brett D Edwards ◽  
Ranjani Somayaji ◽  
Dina Fisher ◽  
Justin C Chia

Mycobacterium elephantis was first described when isolated from an elephant that succumbed to lung abscess. However, despite this namesake, it is not associated with animals and has been described most often as a probable colonizer rather than pathogen in humans with chronic lung disease. In this report, we describe the first case of lymphocutaneous infection from M. elephantis, likely as a result of cutaneous inoculation with contaminated soil. This offers further evidence to its capabilities as a pathogen. We provide a review of the limited prior reports of M. elephantis and outline the available in vitro data on efficacy of various antimycobacterial agents.


Sign in / Sign up

Export Citation Format

Share Document