toxic response
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 51)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 23 (2) ◽  
pp. 714
Author(s):  
Kunal Biswas ◽  
Awdhesh Kumar Mishra ◽  
Pradipta Ranjan Rauta ◽  
Abdullah G. Al-Sehemi ◽  
Mehboobali Pannipara ◽  
...  

At present, the potential role of the AgNPs/endo-fullerene molecule metal nano-composite has been evaluated over the biosystems in-vitro. The intra-atomic configuration of the fullerene molecule (C60) has been studied in-vitro for the anti-proliferative activity of human breast adenocarcinoma (MDA-MB-231) cell lines and antimicrobial activity against a few human pathogens that have been augmented with the pristine surface plasmonic electrons and antibiotic activity of AgNPs. Furthermore, FTIR revealed the basic vibrational signatures at ~3300 cm−1, 1023 cm−1, 1400 cm−1 for O-H, C-O, and C-H groups, respectively, for the carbon and oxygen atoms of the C60 molecule. NMR studies exhibited the different footprints and magnetic moments at ~7.285 ppm, explaining the unique underlying electrochemical attributes of the fullerene molecule. Such unique electronic and physico-chemical properties of the caged carbon structure raise hope for applications into the drug delivery domain. The in-vitro dose-dependent application of C60 elicits a toxic response against both the breast adenocarcinoma cell lines and pathogenic microbes. That enables the use of AgNPs decorated C60 endo fullerene molecules to design an effective anti-cancerous drug delivery and antimicrobial agent in the future, bringing a revolutionary change in the perspective of a treatment regime.


2021 ◽  
Vol 2021 (3) ◽  
pp. 88-107
Author(s):  
Valentina Kosolapova ◽  
Mohaimen Khalifa ◽  
Olga Mokrushina

Through a comprehensive review of published reports on mycotoxin removal strategies, this work aims to update the understanding of the removal of mycotoxins present in the feed. Mycotoxins in feed: from prevention in the field to detoxification by adsorption or transformation. Mycotoxins are secondary metabolites present worldwide in agricultural products and produced by fungi that cause a toxic response (mycotoxicosis) when ingested by animals. Prevention of mycotoxicosis includes strategies before and after harvesting. The best way to reduce the content of mycotoxins in the feed is to prevent the formation of mycotoxins, but it is often not enough, so other methods are needed. The most common approach in the feed industry is the inclusion of sorbing materials in the feed, which provides more or less selective removal of toxins by adsorption during passage through the gastrointestinal tract. Another reliable approach is the addition of enzymes or microorganisms that can remove toxins from some mycotoxins.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jayne C. Boyer ◽  
Laura W. Taylor ◽  
Leena A. Nylander-French

AbstractThe isocyanate monomer 1,6-hexamethylene diisocyanate (HDI) and one of its trimers, HDI isocyanurate, are airway and skin sensitizers contained in polyurethane paint. The toxic response of cultured skin cells to these compounds was measured by evaluating the isocyanate concentrations at which 50% of the cells die (i.e., lethal concentration 50%, LC50) because the relative toxicity of each form of HDI should be considered when exposure limits of HDI-based paints are set. By using a luminescent ATP-viability assay, we compared the cytotoxic effects of HDI monomer and HDI isocyanurate on cultured human skin cells (keratinocytes, fibroblasts, and melanocytes) after 4-h isocyanate exposures using culture media with varying levels of nutrients in order to also determine the effects of media composition on isocyanate toxicity. Before analysis, experimental wells were normalized to controls containing cells that were cultured with the same vehicle and media. The measured mean LC50 values ranged from 5 to 200 µM across the experimental conditions, in which HDI isocyanurate in protein-devoid media was the most toxic to cells, producing the lowest LC50 values. For HDI monomer, keratinocytes were the most resistant to its toxicity and melanocytes were the most susceptible. However, when exposed to HDI isocyanurate, the opposite was observed, with melanocytes being the most resilient and the keratinocytes and fibroblasts were more susceptible. Depending on the type of skin cells, dose–response data indicated that HDI isocyanurate was 2–6 times more toxic than HDI monomer when using protein-devoid media whereas HDI isocyanurate was 4–13 times more toxic than HDI monomer when protein-rich media was used. Therefore, if the protein-devoid saline medium alone were used for these experiments, then a significant under-estimation of their relative toxicities in protein-rich environments would have resulted. This difference is because HDI monomer toxicity was more attenuated by the presence of protein in the culture media than HDI isocyanurate toxicity. Thus, conclusions based on comparative toxicity studies and consequent inference applied to potential human toxicity can be affected by in vitro culture media conditions. The physiochemical difference in reactivity of the two forms of HDI to biological molecules most likely explains the observed toxicity differences and may have implications for skin penetration, adverse effects like skin sensitization, and systemic responses like asthma. Future studies are warranted to investigate differences in the biological availability, cellular toxicity, and immunologic sensitization mechanisms for HDI monomer and HDI isocyanurate.


2021 ◽  
Vol 15 ◽  
Author(s):  
Glaucia M. Almeida ◽  
Juliano P. Souza ◽  
Niele D. Mendes ◽  
Marjorie C. Pontelli ◽  
Nathalia R. Pinheiro ◽  
...  

Oropouche virus (OROV) is an emerging arbovirus in South and Central Americas with high spreading potential. OROV infection has been associated with neurological complications and OROV genomic RNA has been detected in cerebrospinal fluid from patients, suggesting its neuroinvasive potential. Motivated by these findings, neurotropism and neuropathogenesis of OROV have been investigated in vivo in murine models, which do not fully recapitulate the complexity of the human brain. Here we have used slice cultures from adult human brains to investigate whether OROV is capable of infecting mature human neural cells in a context of preserved neural connections and brain cytoarchitecture. Our results demonstrate that human neural cells can be infected ex vivo by OROV and support the production of infectious viral particles. Moreover, OROV infection led to the release of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and diminished cell viability 48 h post-infection, indicating that OROV triggers an inflammatory response and tissue damage. Although OROV-positive neurons were observed, microglia were the most abundant central nervous system (CNS) cell type infected by OROV, suggesting that they play an important role in the response to CNS infection by OROV in the adult human brain. Importantly, we found no OROV-infected astrocytes. To the best of our knowledge, this is the first direct demonstration of OROV infection in human brain cells. Combined with previous data from murine models and case reports of OROV genome detection in cerebrospinal fluid from patients, our data shed light on OROV neuropathogenesis and help raising awareness about acute and possibly chronic consequences of OROV infection in the human brain.


2021 ◽  
Vol 11 (22) ◽  
pp. 10519
Author(s):  
Nguyễn Hoàng Ly ◽  
Sang Jun Son ◽  
Ho Hyun Kim ◽  
Sang-Woo Joo

Many scientists are increasingly interested in on-site detection methods of phenol and its derivatives because these substances have been universally used as a significant raw material in the industrial manufacturing of various chemicals of antimicrobials, anti-inflammatory drugs, antioxidants, and so on. The contamination of phenolic compounds in the natural environment is a toxic response that induces harsh impacts on plants, animals, and human health. This mini-review updates recent developments and trends of novel plasmonic resonance nanomaterials, which are assisted by various optical sensors, including colorimetric, fluorescence, localized surface plasmon resonance (LSPR), and plasmon-enhanced Raman spectroscopy. These advanced and powerful analytical tools exhibit potential application for ultrahigh sensitivity, selectivity, and rapid detection of phenol and its derivatives. In this report, we mainly emphasize the recent progress and novel trends in the optical sensors of phenolic compounds. The applications of Raman technologies based on pure noble metals, hybrid nanomaterials, and metal–organic frameworks (MOFs) are presented, in which the remaining establishments and challenges are discussed and summarized to inspire the future improvement of scientific optical sensors into easy-to-operate effective platforms for the rapid and trace detection of phenol and its derivatives.


2021 ◽  
Vol 350 ◽  
pp. S94-S95
Author(s):  
L. Zapor ◽  
L. Chojnacka-Puchta ◽  
D. Sawicka ◽  
K. Miranowicz-Dzierżawska ◽  
J. Skowroń

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Yuanyuan Chen ◽  
Li Dong ◽  
Fuchang Deng ◽  
Yaqiang Cao ◽  
Yuanzheng Fu ◽  
...  

Abstract Background The large-scale applications of alumina nanoparticles (Al2O3-NPs), one of the most important NPs in the global market, are causing severe damages to the environment and human health. Our previous research has revealed a critical role of nanoparticle morphology (e.g., flake and rod) in determining the toxic potencies of Al2O3-NPs, where nanorods demonstrated a significantly stronger toxic response than that of nanoflakes. However, their underlying mechanisms have not been completely elucidated yet. In the present study, we evaluated and compared the potential toxicological mechanisms of two shapes of γ-Al2O3-NPs (flake versus rod) by measuring miRNA and mRNA profiles of astrocytes in rat cerebral cortex, ex vivo. Results A total of 269 mRNAs and 122 miRNAs, 180 mRNAs and 116 miRNAs were differentially expressed after nanoflakes or nanorods exposure, respectively. Among them, 55 miRNAs (e.g., miR-760-5p, miR-326-3p, and miR-35) and 105 mRNAs (e.g., Kdm4d, Wdr62, and Rps6) showed the same trend between the two shapes. These miRNAs and mRNAs were mainly involved in apoptosis, inflammatory pathways (e.g., NF-kappa B), carcinogenic pathways (e.g., MAPK, p53, Notch, Rap1, and Ras), and cellular lipid metabolisms (e.g., glycerolipid metabolism, sphingolipid, and ether lipid metabolism). However, the remaining miRNAs and mRNAs either showed an opposite trend or only changed by a particular shape. Nanorods could specifically alter the changes of PI3K/Akt, AMPK and TNF pathways, cell cycle, and cellular senescence, while nanoflakes caused the changes of Toll and lmd signaling pathways. Conclusions Combined with previous research results, we further revealed the potential biomolecular mechanisms leading to the stronger toxicity of nanorods than that of nanoflakes, and multi-omics is a powerful approach to elucidate morphology-related mode of actions.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 872
Author(s):  
Nicole Nawrot ◽  
Ewa Wojciechowska ◽  
Muhammad Mohsin ◽  
Suvi Kuittinen ◽  
Ari Pappinen ◽  
...  

This paper provides an overview of different methods of assessing the trace metal (TM) contamination status of sediments affected by anthropogenic interference. The geochemical background determination methods are also described. A total of 25 papers covering rivers, lakes, and retention tanks sediments in areas subjected to anthropogenic pressure from the last three years (2019, 2020, and 2021) were analysed to support our examination of the assessment measures. Geochemical and ecotoxicological classifications are presented that may prove useful for sediment evaluation. Among the geochemical indices, several individual pollution indices (CF, Igeo, EF, Pi (SPI), PTT), complex pollution indices (PLI, Cdeg, mCdeg, Pisum, PIAvg, PIaAvg, PIN, PIProd, PIapProd, PIvectorM, PINemerow, IntPI, MPI), and geochemical classifications are compared. The ecotoxicological assessment includes an overview of Sediment Quality Guidelines (SQG) and classifications introduced nationally (as LAWA or modified LAWA). The ecotoxicological indices presented in this review cover individual (ERi) and complex indices (CSI, SPI, RAC, PERI, MERMQ). Biomonitoring of contaminated sites based on plant bioindicators is extensively explored as an indirect method for evaluating pollution sites. The most commonly used indices in the reviewed papers were Igeo, EF, and CF. Many authors referred to ecotoxicological assessment via SQG. Moreover, PERI, which includes the toxic response index, was just as popular. The most recognised bioindicators include the Phragmites and Salix species. Phragmites can be considered for Fe, Cu, Cd, and Ni bioindication in sites, while Salix hybrid cultivars such as Klara may be considered for phytostabilisation and rhizofiltration due to higher Cu, Zn, and Ni accumulation in roots. Vetiveria zizanoides demonstrated resistance to As stress and feasibility for the remediation of As. Moreover, bioindicators offer a feasible tool for recovering valuable elements for the development of a circular economy (e.g., rare earth elements).


2021 ◽  
Vol 22 (16) ◽  
pp. 8557
Author(s):  
Tao Huang ◽  
Guohui Sun ◽  
Lijiao Zhao ◽  
Na Zhang ◽  
Rugang Zhong ◽  
...  

Nitroaromatic compounds (NACs) are ubiquitous in the environment due to their extensive industrial applications. The recalcitrance of NACs causes their arduous degradation, subsequently bringing about potential threats to human health and environmental safety. The problem of how to effectively predict the toxicity of NACs has drawn public concern over time. Quantitative structure–activity relationship (QSAR) is introduced as a cost-effective tool to quantitatively predict the toxicity of toxicants. Both OECD (Organization for Economic Co-operation and Development) and REACH (Registration, Evaluation and Authorization of Chemicals) legislation have promoted the use of QSAR as it can significantly reduce living animal testing. Although numerous QSAR studies have been conducted to evaluate the toxicity of NACs, systematic reviews related to the QSAR modeling of NACs toxicity are less reported. The purpose of this review is to provide a thorough summary of recent QSAR studies on the toxic effects of NACs according to the corresponding classes of toxic response endpoints.


Sign in / Sign up

Export Citation Format

Share Document