Generalized interval-valued Pythagorean fuzzy aggregation operators and their application to group decision-making

2018 ◽  
Vol 4 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Khaista Rahman ◽  
Saleem Abdullah
2014 ◽  
Vol 20 (4) ◽  
pp. 648-672 ◽  
Author(s):  
Wei Zhou ◽  
Jian Min He

An important research topic related to the theory and application of the interval-valued intuitionistic fuzzy weighted aggregation operators is how to determine their associated weights. In this paper, we propose a precise weight-determined (PWD) method of the monotonicity and scale-invariance, just based on the new score and accuracy functions of interval-valued intuitionistic fuzzy number (IIFN). Since the monotonicity and scale-invariance, the PWD method may be a precise and objective approach to calculate the weights of IIFN and interval-valued intuitionistic fuzzy aggregation operator, and a more suitable approach to distinguish different decision makers (DMs) and experts in group decision making. Based on the PWD method, we develop two new interval-valued intuitionistic fuzzy aggregation operators, i.e. interval-valued intuitionistic fuzzy ordered precise weighted averaging (IIFOPWA) operator and interval-valued intuitionistic fuzzy ordered precise weighted geometric (IIFOPWG) operator, and study their desirable properties in detail. Finally, we provide an illustrative example.


2019 ◽  
Vol 24 (10) ◽  
pp. 7319-7334 ◽  
Author(s):  
Muhammad Shakeel ◽  
Saleem Abdullah ◽  
Muhammad Aslam ◽  
Muhammad Jamil

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Shenqing Jiang ◽  
Wei He ◽  
Fangfang Qin ◽  
Qingqing Cheng

In this paper, we focus on new methods to deal with multiple attribute group decision-making (MAGDM) problems and a new comparison law of interval-valued dual hesitant fuzzy elements (IVDHFEs). More explicitly, the interval-valued dual hesitant fuzzy 2nd-order central polymerization degree (IVDHFCP2) function is introduced, for the case that score values of different IVDHFEs are identical. This function can further compare different IVDHFEs. Then, we develop a series of interval-valued dual hesitant fuzzy power Heronian aggregation operators, i.e., the interval-valued dual hesitant fuzzy power Heronian mean (IVDHFPHM) operator, the interval-valued dual hesitant fuzzy power geometric Heronian mean (IVDHFPGHM) operator, and their weighted forms. Some desirable properties and their special cases are discussed. These proposed operators can simultaneously reflect the interrelationship of aggregated arguments and reduce the influence of unreasonable evaluation values. Finally, two approaches for interval-valued dual hesitant fuzzy MAGDM with known or unknown weight information are presented. An illustrative example and comparative studies are given to verify the advantages of our methods. A sensitivity analysis of the decision results is analyzed with different parameters.


Sign in / Sign up

Export Citation Format

Share Document