scholarly journals Cognitive compatibility in modern manual mixed-model assembly systems

Author(s):  
Dominic Bläsing ◽  
Manfred Bornewasser ◽  
Sven Hinrichsen

AbstractThe compatibility concept is widely used in psychology and ergonomics. It describes the fit between elements of a sociotechnical system which is a prerequisite to successfully cooperate towards a common goal. For at least three decades, cognitive compatibility is of increasing importance. It describes the fit of externally presented information, information processing, and the required motor action. However, with increasing system complexity, probability for incompatibility increases, too, leading to time losses, errors and overall degraded performance. The elimination of cognitive incompatibilities through ergonomic measures at the workplace requires a lot of creativity and effort. Using practical examples from mixed-model assembly, improved information management and the use of informational assistance systems are discussed as promising ergonomic approaches. The ultimate goal is to avoid cognitive overload, for example in part picking or assembly tools choosing. To find a fit between externally mediated work instructions via displays and the subjectively used internal models and competencies is a challenging task. Only if this fit is given the system is perceived as beneficial. To achieve this, the assistance system should be configurable to fit individual needs as far as possible. Successful system design requires early participation and comprehensive integration of the assistance systems into the existing IT infrastructure.Practical relevance: Varied manual assembly requires a high degree of cognitive work. A rise in complexity of the assembly task increases the risk that cognitive incompatibility and thus cognitive overload will occur more frequently. It is shown that such unhealthy conditions can be countered by better information presentation and by the use of individually adaptable informational assistance systems.

2021 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
Dominic Bläsing ◽  
Manfred Bornewasser

(1) Background: Cognitive aspects and complexity in modern manual mixed model assembly are increasing. To reduce mental workload (MWL), informational assistance systems are introduced. The influence of complexity and used assistance system on MWL should be investigated to further improve the implementation of such assistance systems. (2) Methods: Using a simulated close to real-life assembly task a 2 × 3 design was chosen, with two levels of assembly complexity (within subjects) and three different assistance systems (paper, Augmented Reality (AR)-glasses, tablet–between subjects). MWL was measured using either physiological response (electrocardiogram (ECG) and eye-tracking) or performance indicators. (3) Results: An influence of task complexity on MWL can be shown. Additionally, usability based differences between the used assistance systems become more evident with reference to the results of area of interest analysis. (4) Conclusions: Using a multi-modal measurement approach, it is possible to detect complexity-based differences in MWL. Additional research on validity and alignment is needed to further use these for (neuro-) ergonomic considerations and recommendations.


Procedia CIRP ◽  
2016 ◽  
Vol 41 ◽  
pp. 201-206 ◽  
Author(s):  
Stefan Keckl ◽  
Wolfgang Kern ◽  
Antoin Abou-Haydar ◽  
Engelbert Westkämper

Sign in / Sign up

Export Citation Format

Share Document