Randomized Controlled Trial Examining the Long-Term Memory Effects of Acute Exercise During the Memory Consolidation Stage of Memory Formation

2018 ◽  
Vol 3 (3) ◽  
pp. 245-250 ◽  
Author(s):  
Dylan Delancey ◽  
Emily Frith ◽  
Eveleen Sng ◽  
Paul D. Loprinzi
2021 ◽  
pp. 105807
Author(s):  
Beatriz Araújo Cavendish ◽  
Marcos Felipe Rodrigues de Lima ◽  
Lara Perícoli ◽  
Luciano Grüdtner Buratto

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A47-A47
Author(s):  
N Sattari ◽  
L Whitehurst ◽  
K Vinces ◽  
S Mednick

Abstract Introduction It is widely accepted that “offline” processes during sleep contributes to memory. Working Memory (WM) capacity, which reflects “online” memory processing, is an important factor influencing cognitive functioning, which declines with age. In younger individuals, a positive association is reported between WM-capacity and declarative memory improvement. Methods We examined the relation between WM and long-term memory consolidation, among younger [N=105, 18-25yr] and older adults (N=119, 60-85yr). Subjects completed an OSPAN WM task, encoded a Word-Paired Association (WPA) task in the morning (Test1), and were tested on the WPA in the afternoon (Test2) after a 90-minute polysomnographically-recorded nap or wake. Half of the subjects were exposed to negatively valenced word-pairs (EWPA) while the other half were exposed to neutral word-pairs (NWPA). Subjects rated valence of the word-pairs at Test1 and Test2. We compared the four groups (young-EWPA, young-NWPA, old-EWPA and old-NWPA) on WM and WPA in both wake and sleep. Results In both wake and sleep, in the WPA, ageXword-condition interaction was found (p=.004). Post-hoc analysis revealed that in wake, younger-EWPA had higher performance (p=.03) than younger-NWPA, however, older-EWPA had lower performance (p=.03) than older-NWPA. Additionally, we found an ageXword-condition interaction whereby youngers showed no change in ratings, while older adults rated word-pairs more positively both in wake (p=.03) and sleep (p=.002) at Test 2. Youngers had higher WM performance (p=.007), also their WM performance was positively associated with WPA both for Neutral (p=.03) and Emotional (p=.01). WM and WPA among older adults was not related. In younger-EWPA, Stage2-sleep-minutes was positively associated to WPA improvement (p=.03) where this association was negative among older-EWPA (p=.02). In older-NWPA, Stage2-sleep-minutes was positively associated with WPA (p=.004). Conclusion Our findings indicate an association between WM and emotionally-salient memory formation that is modulated by age. Older adults, but not younger, showed the emotional bias previously reported. WM was higher in younger adults related to memory improvement. Stage2-sleep was related to memory improvement in both groups, but in opposite directions. In sum, the role of sleep in memory consolidation changes with aging and WM may play a role in this process. Support Fenn et al.,2012


2007 ◽  
Vol 26 (1) ◽  
pp. 282-290 ◽  
Author(s):  
Adriana S. Coitinho ◽  
Marilene H. Lopes ◽  
Glaucia N.M. Hajj ◽  
Janine I. Rossato ◽  
Adriana R. Freitas ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jean-Pascal Morin ◽  
Kioko Guzmán-Ramos ◽  
Federico Bermudez-Rattoni

The mainstream view on the neurobiological mechanisms underlying memory formation states that memory traces reside on the network of cells activated during initial acquisition that becomes active again upon retrieval (reactivation). These activation and reactivation processes have been called “conjunctive trace.” This process implies that singular molecular events must occur during acquisition, strengthening the connection between the implicated cells whose synchronous activity must underlie subsequent reactivations. The strongest experimental support for the conjunctive trace model comes from the study of immediate early genes such as c-fos, zif268, and activity-regulated cytoskeletal-associated protein. The expressions of these genes are reliably induced by behaviorally relevant neuronal activity and their products often play a central role in long-term memory formation. In this review, we propose that the peculiar characteristics of Arc protein, such as its optimal expression after ongoing experience or familiar behavior, together with its versatile and central functions in synaptic plasticity could explain how familiarization and recognition memories are stored and preserved in the mammalian brain.


2010 ◽  
Vol 4 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Monica R.M. Vianna ◽  
Adriana Coitinho ◽  
Luciana Izquierdo ◽  
Ivan Izquierdo

Abstract Protein phosphorylation mediated by serine-threonine kinases in the hippocampus is crucial to the synaptic modifications believed to underlie memory formation. The role of phosphatases has been the focus of comparatively little study. Objectives: Here we evaluate the contribution of the serine-threonine protein phosphatases 1 and 2A (PP1, PP2A) on memory consolidation. Methods: We used immediate post-training bilateral hippocampal infusions of okadaic acid (OA, 0.01 and 10 pmol/side), a potent inhibitor of PP1 and PP2A, and measured short- [3 h] and long-term memory [24 h] (STM, LTM) of step-down inhibitory avoidance. Results: At the lower dose, OA inhibited both STM and LTM whereas at the higher dose it instead enhanced LTM. Pre-test infusion of these two doses of OA had no effect on retrieval. Conclusions: These two doses of OA are known to selectively inhibit PP1 and PP2A respectively. These findings point to the importance of these enzymes in memory formation and also suggest a deleterious influence of endogenous hippocampal PP2A on LTM formation.


2015 ◽  
Vol 112 (11) ◽  
pp. 3541-3546 ◽  
Author(s):  
Tadashi Yamazaki ◽  
Soichi Nagao ◽  
William Lennon ◽  
Shigeru Tanaka

Long-term depression (LTD) at parallel fiber–Purkinje cell (PF–PC) synapses is thought to underlie memory formation in cerebellar motor learning. Recent experimental results, however, suggest that multiple plasticity mechanisms in the cerebellar cortex and cerebellar/vestibular nuclei participate in memory formation. To examine this possibility, we formulated a simple model of the cerebellum with a minimal number of components based on its known anatomy and physiology, implementing both LTD and long-term potentiation (LTP) at PF–PC synapses and mossy fiber–vestibular nuclear neuron (MF–VN) synapses. With this model, we conducted a simulation study of the gain adaptation of optokinetic response (OKR) eye movement. Our model reproduced several important aspects of previously reported experimental results in wild-type and cerebellum-related gene-manipulated mice. First, each 1-h training led to the formation of short-term memory of learned OKR gain at PF–PC synapses, which diminished throughout the day. Second, daily repetition of the training gradually formed long-term memory that was maintained for days at MF–VN synapses. We reproduced such memory formation under various learning conditions. Third, long-term memory formation occurred after training but not during training, indicating that the memory consolidation occurred during posttraining periods. Fourth, spaced training outperformed massed training in long-term memory formation. Finally, we reproduced OKR gain changes consistent with the changes in the vestibuloocular reflex (VOR) previously reported in some gene-manipulated mice.


Sign in / Sign up

Export Citation Format

Share Document