A Data Mining Framework for Glaucoma Decision Support Based on Optic Nerve Image Analysis Using Machine Learning Methods

2018 ◽  
Vol 2 (4) ◽  
pp. 370-401 ◽  
Author(s):  
Syed S. R. Abidi ◽  
Patrice C. Roy ◽  
Muhammad S. Shah ◽  
Jin Yu ◽  
Sanjun Yan
2018 ◽  
Vol 117 (3) ◽  
pp. 387-423
Author(s):  
Marco Götz ◽  
Ferenc Leichsenring ◽  
Thomas Kropp ◽  
Peter Müller ◽  
Tobias Falk ◽  
...  

Author(s):  
Sook-Ling Chua ◽  
Stephen Marsland ◽  
Hans W. Guesgen

The problem of behaviour recognition based on data from sensors is essentially an inverse problem: given a set of sensor observations, identify the sequence of behaviours that gave rise to them. In a smart home, the behaviours are likely to be the standard human behaviours of living, and the observations will depend upon the sensors that the house is equipped with. There are two main approaches to identifying behaviours from the sensor stream. One is to use a symbolic approach, which explicitly models the recognition process. Another is to use a sub-symbolic approach to behaviour recognition, which is the focus in this chapter, using data mining and machine learning methods. While there have been many machine learning methods of identifying behaviours from the sensor stream, they have generally relied upon a labelled dataset, where a person has manually identified their behaviour at each time. This is particularly tedious to do, resulting in relatively small datasets, and is also prone to significant errors as people do not pinpoint the end of one behaviour and commencement of the next correctly. In this chapter, the authors consider methods to deal with unlabelled sensor data for behaviour recognition, and investigate their use. They then consider whether they are best used in isolation, or should be used as preprocessing to provide a training set for a supervised method.


Author(s):  
Umesh R. Rosyara ◽  
Kate Dreher ◽  
Bhoja R. Basnet ◽  
Susanne Dreisigacker

Abstract This chapter discusses the increased implications in the current breeding methodology of wheat, such as rapid evolution of new sequencing and genotyping technologies, automation of phenotyping, sequencing and genotyping methods and increased use of prediction and machine learning methods. Some of the strategies that will further transform wheat breeding in the next few years are also presented.


10.2196/12001 ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. e12001 ◽  
Author(s):  
Quazi Abidur Rahman ◽  
Tahir Janmohamed ◽  
Meysam Pirbaglou ◽  
Hance Clarke ◽  
Paul Ritvo ◽  
...  

2017 ◽  
Author(s):  
Βασίλειος Κανάς

Η δουλειά η οποία παρουσιάζεται σε αυτήν την διδακτορική διατριβή ανήκει στο πλαίσιο της μηχανικής μάθησης και την ανάπτυξη μεθοδολογιών για την επεξεργασία και ανάλυση μονοδιάστατων και διδιάστατων εγκεφαλικών σημάτων. Πιο συγκεκριμένα, εστιάζεται: 1) στην μελέτη, επεξεργασία και ανάλυση εγκεφαλικών σημάτων ηλεκτροκορτικογραφήματος για τον εντοπισμό φωνητικής δραστηριοποίησης και την ταξινόμηση συλλαβών με σκοπό τον σχεδιασμό και ανάπτυξη ενός BCI συστήματος για την αποκατάσταση ασθενών με προβλήματα ομιλίας, 2) στην επεξεργασία εικόνων μαγνητικής τομογραφίας εγκεφάλου με σκοπό την τμηματοποίηση και ταξινόμηση καρκινικών εγκεφαλικών όγκων, και 3) την μαθηματική μοντελοποίηση δικτύων βιολογικών νευρώνων.


2021 ◽  
Vol 37 ◽  
pp. 76-82
Author(s):  
Ana M Jimenez-Carvelo ◽  
Luis Cuadros-Rodríguez

2018 ◽  
Author(s):  
Dennis Leser ◽  
Matthias Wastian ◽  
Matthias Rößler ◽  
Michael Landsied

Sign in / Sign up

Export Citation Format

Share Document