Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield
Latest Publications


TOTAL DOCUMENTS

29
(FIVE YEARS 29)

H-INDEX

0
(FIVE YEARS 0)

Published By CABI

9781789245431

Author(s):  
Geoffrey Onaga ◽  
Kerstin Wydra

Abstract This chapter provides an overview of the recent significant perspectives on molecules involved in response and tolerance to drought and salinity, the 2 major abiotic stresses affecting crop production, and highlights major molecular components identified in major cereals.


Author(s):  
T. Maharajan ◽  
G. Victor Roch ◽  
S. Antony Ceasar

Abstract This chapter discusses the importance and implications of nitrogen, phosphorus and potassium as essential nutrients and the application of molecular breeding and functional genomics for improving nutrient-use efficiency in wheat are presented. Improvement of nutrient-use efficiency through genetic modification and impact of climate change on nitrogen, phosphorus and potassium management were also discussed.


Author(s):  
Pardeep Kumar ◽  
Mukesh Choudhary ◽  
B. S. Jat ◽  
M. C. Dagla ◽  
Vishal Singh ◽  
...  

Abstract This chapter focuses on target traits for drought stress, progress in mapping for drought tolerance-associated genes/QTLs identification and expression studies and introgression strategies followed by the possibilities of integrating the concept of speed breeding in maize drought breeding programmes for better utilization of wild relatives.


Author(s):  
Kuo-hai Yu ◽  
Hui-ru Peng ◽  
Zhong-fu Ni ◽  
Ying-yin Yao ◽  
Zhao-rong Hu ◽  
...  

Abstract This paper discusses wheat responses to heat stress (including morphological and growth, cellular structure and physiological responses) and the molecular-genetic bases of heat response in wheat (including topics on mapping quantitative trait loci related to heat tolerance and the role of functional genes in response to heat stress). The improvement of heat tolerance of wheat by comprehensive strategies is also described. It is believed that with the emphasis on genetic resource exploration and with better understanding of the molecular basis, heat tolerance will be improved during wheat breeding programmes in the future.


Author(s):  
Umesh R. Rosyara ◽  
Kate Dreher ◽  
Bhoja R. Basnet ◽  
Susanne Dreisigacker

Abstract This chapter discusses the increased implications in the current breeding methodology of wheat, such as rapid evolution of new sequencing and genotyping technologies, automation of phenotyping, sequencing and genotyping methods and increased use of prediction and machine learning methods. Some of the strategies that will further transform wheat breeding in the next few years are also presented.


Author(s):  
S. A. C. N. Perera ◽  
Saman Seneweera

Abstract Out of the different objectives of wheat breeding, this chapter focuses on the direct increment of wheat yields via genetic improvement of the crop. The efficiency of modern molecular techniques, along with the availability of the whole-genome sequence of wheat, in mining wheat germplasm for allele-specific desirable traits is also discussed.


Author(s):  
Cassandria Tay Fernandez ◽  
Jacob Marsh ◽  
Mônica Furaste Danilevicz ◽  
Clémentine Mercé ◽  
David Edwards

Abstract This chapter discusses the application of pangenomics for molecular breeding of wheat. Pangenomes can be used by both researchers and breeders alike to develop elite wheat cultivars through the discovery and integration of genetic variations associated with agronomically beneficial traits. By providing a reference that accommodates for variation in individuals, variants whose presence and/or absence control abiotic stress resistance and yield can be identified. This tool has only become more informative as more wheat varieties are sequenced, new sequencing approaches such as long-read sequencing and genome mapping are utilized, and tools for pangenomic analysis are developed. With pangenomics, variable genes from wild wheat relatives and related species can be used to optimize wheat molecular breeding and develop improved varieties tailored for the changing global environment.


Author(s):  
Ishwar Singh ◽  
Krishan Kumar ◽  
Prabha Singh ◽  
Pranjal Yadava ◽  
Sujay Rakshit

Abstract This chapter discusses (i) the importance of nitrogen in plant growth and development, (ii) what is nitrogen-use efficiency (NUE) and how to manage it, (iii) traits influencing nitrogen-uptake efficiency including root system architecture, root nitrogen transporter system, and interaction with microorganisms, (iv) traits influencing nitrogen-utilization efficiency, such as nitrate assimilation, canopy photosynthesis per unit of nitrogen, (v) identification and use of quantitative trait loci (QTLs) related to NUE, (vi) identification of nitrogen-responsive genes, and (vii) nitrogen signalling and transduction for improving NUE. Intensive research on molecular and genetic aspects of NUE has led to the identification of many new genes, QTLs and alleles that could be deployed to develop new genotypes. The future direction of the research efforts should be towards understanding the interaction of NUE-related genes with cellular small RNA flux and perturbing the system performance through metabolic engineering and genome editing techniques.


Author(s):  
Mei-ping Zhang ◽  
Yun-Hua Liu ◽  
Hong-Bin Zhang

Abstract This chapter clarifies plant breeding and its underlying molecular basis, then reviews the molecular technologies that have been developed thus far for enhanced plant breeding, which are necessary to better understand the applications and perspectives of these molecular technologies for enhanced maize breeding. This chapter updates the recent advances of the molecular technologies for maize grain yield breeding in the past decade and compares these molecular technologies and underlines their perspectives for continued maize yield improvement.


Author(s):  
K. Hariprasanna ◽  
P. Rajendrakumar

Abstract This chapter summarizes the limited efforts that have been undertaken to enhance the micronutrient content in sorghum using molecular breeding approaches. Increasing the micronutrient content of sorghum grain is of paramount importance for alleviating malnutrition since it will help in overcoming the hidden hunger that is prevalent in millions of women and children in the sorghum-growing/consuming regions across the globe. It is known that biofortification involving crop breeding, genetic modification, and even agronomic augmentation of minerals, is a promising strategy that offers immense promise for addressing the challenges posed by micronutrient malnutrition.


Sign in / Sign up

Export Citation Format

Share Document