Effect of pre-fatigue loading on tensile damage and fracture of fiber-reinforced ceramic-matrix composites

2020 ◽  
Vol 56 (4) ◽  
pp. 1551-1573
Author(s):  
Longbiao Li
2021 ◽  
Vol 5 (7) ◽  
pp. 187
Author(s):  
Longbiao Li

In this paper, micromechanical constitutive models are developed to predict the tensile and fatigue behavior of fiber-reinforced ceramic-matrix composites (CMCs) considering matrix fragmentation and closure. Damage models of matrix fragmentation, interface debonding, and fiber’s failure are considered in the micromechanical analysis of tensile response, and the matrix fragmentation closure, interface debonding and repeated sliding are considered in the hysteresis response. Relationships between the matrix fragmentation and closure, tensile and fatigue response, and interface debonding and fiber’s failure are established. Experimental matrix fragmentation density, tensile curves, and fatigue hysteresis loops of mini, unidirectional, cross-ply, and 2D plain-woven SiC/SiC composites are predicted using the developed constitutive models. Matrix fragmentation density changes with increasing or decreasing applied stress, which affects the nonlinear strain of SiC/SiC composite under tensile loading, and the interface debonding and sliding range of SiC/SiC composite under fatigue loading.


Sign in / Sign up

Export Citation Format

Share Document