dissipated energy
Recently Published Documents


TOTAL DOCUMENTS

819
(FIVE YEARS 284)

H-INDEX

32
(FIVE YEARS 7)

2022 ◽  
Vol 906 ◽  
pp. 107-113
Author(s):  
Tigran Petrosyan ◽  
Sargis Khachatryan ◽  
Namat Namatyan

The energy dissipation for one cycle of clay soil deformation over the area of ​​a hysteresis loop under conditions of one-dimensional deformation has been experimentally studied. Several series of trials were carried out under different conditions of soil density and moisture and different loading modes. It was established by the experiments that after several cycles of loading and unloading of the samples, the transient process of the closed loop formation ends and certain dependences of stress on deformations are established in the sections of the ascending and descending branches of the hysteresis loop. To determine these dependencies, rheological relations obtained directly from the hysteresis loop by approximating the arcs of its contour have been used. By integrating the approximating rheological dependences along the branches of the loop, the dissipated energy per deformation cycle has been obtained as a function of cyclic deformation amplitude, measured by the area of the hysteresis loop. Experiments on obtaining a hysteresis loop were carried out on a compression device with a cyclic sample. Samples with different states of density and moisture content were produced by consolidating a paste having yield point moisture under different pressures. Several series of experiments have been carried out. In the first series, soil absorption coefficients were derived for different states of density-moisture at different loading rates. In the second series, three types of clayish soil (clay, loam, sandy loam) were studied. Dissipation coefficients have been found out for the indicated soils. In the third series, three types of clay soil were tested under different conditions of density and moisture. The dissipation coefficients have been obtained. In the fourth series, the dependences of the absorption coefficient on the amplitude value of the cyclic stress for three types of clay soil were disclosed. It was found that a change in the loading rate within the range from 0.05 MPa to 0.2 MPa does not lead to the significant change in the absorption coefficient, the increase in the number of clay fractions in the sample leads to an increase in the absorption coefficient, a change in the amplitude of cyclic loading (in the indicated range of change) does not affect the absorption coefficient.


2022 ◽  
Vol 8 (1) ◽  
pp. 124-133
Author(s):  
Ziane Zadri ◽  
Bachir Glaoui ◽  
Othmane Abdelkhalek

A large number of additives are introduced in asphalt concrete mixtures in purpose of improving the properties of resistance, facing the increasing traffic and more severe climatic conditions. This will guarantee the good comfort for a longer exploitation time. In this article we used graphite powder as an unconventional additive, and then investigate its effect mainly on the electrical resistivity which is in context of our research work on conductive asphalt (with a resistivity around 106 Ω m), As well as on its mechanical properties evaluated using the new Fenix test that gives many information of mechanical especially dissipated energy. A significant improvement was noticed in the reduction of resistivity by reaching 1.7 × 106Ω m and also greater resistance to cracking based on variation of dissipated energy as a result we concluded that introducing graphite powder with an appropriate amount enhance both mechanical and electrical properties asphalt concrete. Doi: 10.28991/CEJ-2022-08-01-09 Full Text: PDF


2021 ◽  
Author(s):  
Carl Lenngren ◽  
Maria Hernandez

Asset management of infrastructure is fundamental for maintenance planning and preservation of common property. A robust testing program is needed to assess the present-day status and for proper actions in time to minimize the ongoing depreciation of value. As a matter of fact, Portland Cement Concrete pavements show very little deterioration even after many years in service. Thus, it may be difficult to accurately predict the present asset value, other than using linear relations to the presumed design life. The primary reason for failure is cracking in concrete pavements, so assessing the dissipated energy from the load-deformation relation from a given load could be utilized for the purpose. The dissipated energy, i.e. the work data can be assessed by a falling weight deflectometer test, mimicking the passing of a truck or aircraft wheel load. In the present study, dynamic field data are evaluated, and the input data needed for the fracture mechanics model are used to predict the pavement life regarding cracking. To predict fracture energy and assess rolling resistance as well in concrete pavements, we need to consider the energy balance of the pavement system. To assess dissipated energy, falling weight deflectometer time histories are used to evaluate the pavement contribution to rolling resistance. Such analyses include all layers in the structure including the subgrade, so in the present case a way of sorting the dissipation at various depths is investigated. Field data were collected from a site, at mid-life of the predicted design life. The failure was confirmed several years later, and the remaining life was compared with the assumption that the dissipated energy near the edge was enough to initiate the cracks within the actual time to failure. Conversely, the dissipation at the mid-slab position was below the limit. The data from the field test were also used as an input for a finite element model to see if it was viable to further improve the prediction. The method seems to be promising, but more data are needed as the present set only represents the mid-life status.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Jaroslav Lang ◽  
Barbora Zikmundová ◽  
Josef Hájek ◽  
Miloš Barták ◽  
Peter Váczi

Fodder galega (Galega orientalis) is a perennial, wintering plant with great potential for agricultural development. The species has a large yield potential and exceptional adaptability to various environmental conditions. The sensitivity of G. orientalis to herbicides, however, as well as the photosynthetic performance of the species, are generally unknown. Our study aimed to evaluate the effects of the application of selected phenoxy herbicides (MCPA, MCPB) and the imidazoline family herbicide (IMA) on the parameters of primary photosynthetic processes as understood through fast chlorophyll fluorescence kinetics (OJIP). The effect of cultivation temperature was also investigated in the plants grown at 5, 18 and 25 °C. Time courses of OJIP-derived parameters describing photosystem II functioning after foliar application revealed that the plants showed negative responses to the herbicides in the order MCPB–MCPA–IMA within 24 h after the application. The application of herbicides decreased the values of maximum chlorophyll fluorescence (FM) and increased minimum fluorescence (F0), which led to a reduction in the maximal efficiency of PSII (FV/FM). Applications of MCPA and MCPB decreased variable chlorophyll fluorescence at 2 ms (VJ), 30 ms (VI) and VP, as well as the performance index (PIABS), which is considered a vitality proxy. The application increased absorption flux (ABS/RC), trapped energy flux (TRo/RC) and dissipated energy flux (DIo/RC). The effects were more pronounced in plants grown at 18 and 25 °C. The study revealed that the OJIP-derived parameters sensitively reflected an early response of G. orientalis to the foliar application of herbicides. Negative responses of PSII were more apparent in MCPA- and MCPB- exposed plants than IMA-exposed plants.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yang Zhou ◽  
Shengrui Su ◽  
Peng Li

Many geological engineering hazards are closely related to the dynamic mechanical behaviors of rock materials. However, the dynamic mechanical behaviors of phyllite are less studied. In this study, we have carried out a series of triaxial cyclic tests on dry and water-saturated phyllite by employing the MTS 815 servohydraulic testing system and AE testing equipment to reveal the mechanical behavior, energy release, and crack distribution characteristics of phyllite. Results show that phyllite is a water-sensitive rock. Water and cyclic loading substantially affect the compressive strength, crack damage stress, deformation parameters, dilatancy, energy release, and crack distribution characteristics of phyllite. Furthermore, based on the dissipated energy, a new damage variable for phyllite is established. The critical damage variable for phyllite is approximately 0.80; this variable can be used as an index to predict the failure of phyllite. The water saturation effect of phyllite is very obvious; that is, it results in the weakness of mechanical properties of phyllite and changes the AE energy release and crack distribution characteristics of phyllite. This research can provide guidance for engineering construction and disaster prevention and control.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yang Yang ◽  
Niannian Zhang ◽  
Jianguo Wang

The deformation and failure characteristics of red sandstone under subzero temperature were studied by the split Hopkinson pressure bar (SHPB) dynamic impact test. The effects of different subzero temperatures on rock strength properties, fractal dimension, and dissipated energy were analyzed combined with microfracture morphology. The reasons for rock dynamic mechanical property deterioration under lower subzero temperatures were revealed. The research shows that low subzero temperature will cause “frostbite” of red sandstone. Under high strain rate loading, the rock will quickly lose its bearing capacity, and its dynamic mechanical strength will drop sharply. The dissipated energy W L of the frozen rock specimen is positively correlated with the fractal dimension D and closely related to the macroscopic failure characteristics. It could be concluded that greater dissipation energy leads to more serious damage of rock and accordingly results in a larger fractal dimension. Fracture morphology analysis shows that the lower subzero temperature generated remarkable cracks in the material interface of the red sandstone. The damage of the red sandstone could be explained by the fact that the crack tip had low plastic deformation ability under high strain rate loading and the composition of cement was vulnerable to the subzero temperature effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Enlai Zhao ◽  
Enyuan Wang ◽  
Zesheng Zang ◽  
Xiaojun Feng ◽  
Rongxi Shen

The complex mechanical environment of deep coal and rock masses leads to obvious changes on their dynamic mechanical properties. However, there are few reports on the dynamic mechanical properties of rocks under the combined action of medium temperature (normal temperature ∼100°C) and static and dynamic loads. In this paper, a dynamic load and temperature combined action Hopkinson pressure bar experimental system is used to experimentally study the impact type of a fine sandstone under temperature conditions of 18°C, 40°C, 60°C, 80°C, and 100°C, an axial static load of 3 MPa, a gas chamber pressure of 0.06 MPa, and a constant temperature time of 4 h. The dynamic characteristics of the change law of the fine sandstone and the energy dissipation characteristics of the load process are analyzed, and the characteristic law of the fine sandstone surface response is analyzed using digital image correlation technology. Our results indicate the following. (1) Under conditions in which the other experimental conditions remain unchanged, the dynamic stress-strain of the fine sandstone presents a bimodal shape with a “rebound” phenomenon. Increasing temperature causes the peak strength of the fine sandstone to increase; however, the relative strength can increase or decrease. The relative increase in the strength is 1.14 MPa (°C) when the temperature increases from 40°C to 60°C, 0.15 MPa (°C) when the temperature increases from 60°C to 80°C, and 0.62 MPa (°C) when the temperature increases from 80°C to 100°C. (2) The digital image correlation results show that, under the action of a dynamic load stress wave, the fine sandstone experiences a displacement vector change on the sample surface; furthermore, under the combined action of the temperature and dynamic and static loads, the fine sandstone experiences macroscopic shear failure. The surface strain in the propagation direction of the stress wave is obviously higher and can even reach values of more than 10 times that of the strain in other directions. (3) From the perspective of energy dissipation, the incident energy, reflected energy, and dissipated energy of the fine sandstone under an impact load have the same change law. After being affected by a dynamic load, the energy rapidly increases to a certain value and then remains relatively stable. The transmitted energy is relatively small and can be approximated as a horizontal line. As the temperature increases, the incident energy, reflected energy, and dissipated energy tend to first decrease and then increase, and most of the incident energy in the fine sandstone is dissipated in the form of reflected waves.


Author(s):  
Z. Mustafa ◽  
T. M. I Nawi ◽  
S.H.S.M. Fadzullah ◽  
Z. Shamsudin ◽  
S. D. Malingam ◽  
...  

Although there is a perpetual interest in natural fibre composite, the fatigue data and their durability behaviour is still lacking, thus limiting their potential use in high-end applications. In this study, wood polymer composite made from rubberwood flour and recycled polypropylene was subjected to a tension-tension fatigue test in order to investigate their fatigue characteristic. Hysteresis loop was captured in order to establish their stress to number of failure (S-N) curve. The fatigue strength of the composite strongly depends on the stress amplitude. At the lowest stress level, the fatigue life of the composite exceeds the 1.5 million cycles limit, suggesting that the endurance limit for composite materials to be 11.06 MPa. The residual modulus and energy dissipated are plotted as a function of number of fatigue cycles. As the cycles progress, the residual modulus fall and dissipated energy increase indicated the cyclic damage in the composite structure. Two parameters Weibull probability were used to statically analyse the fatigue life and reliability of the rubberwood/recycled polypropylene composite. The S-N curve was plotted at different reliability index (RI = 0.1, 0.368, 0.5, 0.9, 0.99) using Weibull data. This data is used to identify the first failure time and design limits of the materials.


2021 ◽  
Vol 14 (12) ◽  
pp. 1868-1875
Author(s):  
Samuele Gigliola ◽  
◽  
Alfredo Niro ◽  
Carmela Palmisano ◽  
Pasquale Puzo ◽  
...  

AIM: To compare perioperative parameters of one-handed rotational phacoemulsification technique (one-handed phaco-roll) with each of other two techniques, “Divide et Conquer” and femtosecond laser-assisted cataract surgery (FLACS) METHODS: In this retrospective and comparative cohort study, eyes with uncomplicated cataract (nuclear density grade 2 to 3) treated routinely with one-handed phaco-roll (n=23; Group 1) or “Divide et Conquer” (n=23; Group 2) or FLACS (n=23; Group 3) were enrolled. Intraoperative parameters including effective phaco-time (EPt), ultrasound time (USt), aspiration time, surgical time, phacoemulsification (phaco)-power, balanced salt solution (BSS) use, cumulative dissipated energy (CDE) were recorded and compared. Clinical outcomes including best corrected visual acuity (BCVA), corneal endothelial cell density (ECD), endothelial cell loss (ECL), central corneal thickness (CCT) and central macular thickness (CMT), were assessed and compared pre-operatively and at 1mo after surgery. RESULTS: Aspiration and surgical time, and BSS used were lower in Group 1 (P<0.01) than other groups. EPt, phaco-power and CDE were lower in Group 1 (P<0.05) than Group 2 but not significantly different from Group 3. In Group 1, USt was lower (P<0.05) than Group 2 but higher (P<0.05) than Group 3. BCVA improved in all groups without significant difference between Group 1 and the other ones. No significant differences regarding all post-operative morphologic outcomes (ECD, ECL, CCT, CMT) were reported. No clinical complications occurred. CONCLUSION: One-handed phaco-roll seems to be less time-consuming than “Divide et Conquer” and FLACS and less energy-consuming than “Divide et Conquer”. Furthermore, one-handed phaco-roll seems to have an equal safety profile compared to the other two techniques.


2021 ◽  
pp. 112067212110662
Author(s):  
Sharah Rahman ◽  
Anisur Rahman ◽  
Jalal Ahmed ◽  
Ishtiaque Anwar ◽  
Bipul Kumar de Sarker ◽  
...  

Purpose We introduce an innovative technique, “Pac-Man”, for the nuclear management of posterior polar cataracts and compare it with “Chop in situ” and “Fishbowl” techniques. Method A total of 60 eyes from 60 patients were randomly assigned to groups A, B, and C, with 20 eyes in each group. Pac-Man, Chop in situ, and Fishbowl techniques were used for groups A, B, and C. In the Pac-Man method, adequate single trench sculpts, and a right-sided lateral sculpt were performed and cracked. The triangular piece was emulsified, after which the rest of the nucleus looked like a “Pac-Man” cartoon. Techniques were compared by age, visual outcome, Posterior Capsule Rupture (PCR), Cumulative Dissipated Energy (CDE), and time of surgery. Result Postoperative BCVA was significantly improved after surgery ( P = 0.0001, paired t-test). Time taken for surgeries were 25 ± 2.57, 30 ± 3.78, 40 ± 3.25 min, the CDE were 10 ± 0.95, 20 ± 1.2, 15 ± 0.48, and the PCR were 0%, 5%, and 10% for group A,B,C respectively. The total number of PCR was 3 out of 60 patients, and the percentage was 5.00%. Conclusion The “Pac-Man” method is a recommended technique due to its visual outcome, reduced surgical time, less CDE, and less chance of PCR.


Sign in / Sign up

Export Citation Format

Share Document