interface debonding
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 79)

H-INDEX

27
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6671
Author(s):  
Wei Hou ◽  
Xinghua Dai ◽  
Zheyu Yang ◽  
Hanhuang Huang ◽  
Xiaoli Wang ◽  
...  

This paper investigates the seismic behavior of novel stone masonry joints using ductile engineered cementitious composite (ECC) as a substitute for ordinary mortar. Ten stone masonry joints with different types of mortar/ECC were tested under axial and cyclic loads. The filling materials of mortar joints tested included ordinary mortar, polymer mortar, ECC, and composite mortar with two combination proportions of ECC and ordinary mortar. The test results indicated that ECC specimens exhibited a more stable hysteretic response as well as an improvement in strength, deformation, energy dissipation, and strength degradation. The ECC mortar joints maintained integrity during the entire loading process due to the “self-confinement” effect of ECC. A partial substitution of mortar with ECC could provide effective reinforcement and confinement to prevent mortar failure and peeling, thereby allowing such specimens to approach the seismic performance of ECC specimens. Based on the trend of shear strength variations, a corresponding failure process is defined for ECC/mortar joints under cyclic and axial compressive loads, including four distinct stages: linear elastic, crack-developing stage, interface debonding, and friction sliding. New equations are proposed for predicting the shear strength and residual shear strength of the ECC/mortar joints on the basis of the test results, which are validated in the composite mortar specimens.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012036
Author(s):  
Yi-Er Guo ◽  
De-Guang Shang ◽  
Lin-Xuan Zuo ◽  
Lin-Feng Qu ◽  
Di Cai ◽  
...  

Abstract In this paper, the static and fatigue behavior of carbon fiber/Epoxy composites laminate are investigated. The degradation and damage evolution in the composite laminate tests process were monitored using the acoustic emission technique. The acoustic signals collected during the tests were analyzed. The results of the acoustic emission signal accumulated during static and fatigue tests are compared in order to identify the accumulated damage mechanism of carbon fiber/Epoxy composites laminate. The accumulated damage is manifested by matrix cracking, fiber/matrix interface debonding, shear failure, delamination, and fiber break.


2021 ◽  
Author(s):  
Wen Jiang ◽  
Gyanender Singh ◽  
Jason Hales ◽  
Aysenur Toptan ◽  
Benjamin Spencer ◽  
...  

Author(s):  
Wei Du ◽  
Shi-Jie Deng ◽  
Juan-Juan Ren ◽  
Ze-Ming Zhao ◽  
Zhen Wei ◽  
...  

For China Railway Track System (CRTS) I twin-block slab tracks, the interface between the sleeper and track slab is susceptible to damage under the coupled effect of long-term train load and external environment factors. In order to analyze the damage behavior and identify the type of debonding at the interface, this paper established a three-dimensional finite element model and introduced the cohesion zone model and concrete damaged plasticity model to simulate the interface damage and the inner-layer damage of the track slab, respectively. The interface debonding induced by the temperature effect was analyzed, and the debonding types were identified based on the obtained vertical vibration responses of the sleeper surface under the train load. The results reveal that the damage mainly occurs on the bottom and lateral sides at the interface under the temperature load. The track model can be refined further to obtain higher analysis accuracy with acceptable calculation time using the sequential loading method. The 26 damage features derived from the time domain, frequency domain, and time–frequency domain are in good representativeness in reflecting the damage information hidden in the vibration signals. Among them, the peak values (maximum vertical acceleration of the sleeper) are 55.0, 56.7, 60.3, and 61.6[Formula: see text]m/s2 for no debonding, debonding on the lateral side, debonding at the bottom, and debonding on the longitudinal side of the interface under train load, respectively. Moreover, the identification accuracy of the debonding type can reach 93.75% combining the particle swarm algorithm and support vector machine. It indicates that the proposed identification method is effective and reliable to provide theoretical guidance for developing scientific maintenance and repair strategies for twin-block slab tracks.


2021 ◽  
Author(s):  
ROBERT LIVINGSTON ◽  
BEHRAD KOOHBOR

Macroscopic mechanical and failure properties of fiber-reinforced composites depend strongly on the properties of the fiber-matrix interface. For example, transverse cracking behavior and interlaminar shear strength of composites can be highly sensitive to the characteristics of the fiber-matrix interface. Despite its importance, experimental characterization of the mechanical behavior of the fibermatrix interface under normal loading conditions has been limited. This work reports on an experimental approach that uses in situ full-field digital image correlation (DIC) measurements to quantify the mechanical and failure behaviors at the fiber-matrix interface. Single fiber model composite samples are fabricated from a proprietary epoxy embedding a single glass rod. These samples are then tested under transverse tension. DIC is used to measure the deformation and strain fields in the glass rod, epoxy, and their interface vicinity. Initiation and propagation of the fiber-matrix debond are discussed. Full-field measurements are shown to facilitate the quantitative analysis of the traction-separation laws at the fiber-matrix interface subjected to transverse tension.


2021 ◽  
Vol 159 ◽  
pp. 108338
Author(s):  
Cheng Zhang ◽  
Yangyang Wang ◽  
Yingwei Wu ◽  
Shichao Liu ◽  
Ping Chen ◽  
...  

Author(s):  
Daniel Schappel ◽  
Giovanni Pastore ◽  
Kurt A. Terrani

Sign in / Sign up

Export Citation Format

Share Document