Optimized convolutional neural network for identification of maize leaf diseases with adaptive ageist spider monkey optimization model

Author(s):  
Shravankumar Arjunagi ◽  
Nagaraj B. Patil
2018 ◽  
Vol 61 (5) ◽  
pp. 1461-1474 ◽  
Author(s):  
Zhongqi Lin ◽  
Shaomin Mu ◽  
Aiju Shi ◽  
Chao Pang ◽  
Xiaoxiao Sun

Abstract. Traditional methods for detecting maize leaf diseases (such as leaf blight, sooty blotch, brown spot, rust, and purple leaf sheaf) are typically labor-intensive and strongly subjective. With the aim of achieving high accuracy and efficiency in the identification of maize leaf diseases from digital imagery, this article proposes a novel multichannel convolutional neural network (MCNN). The MCNN is composed of an input layer, five convolutional layers, three subsampling layers, three fully connected layers, and an output layer. Using a method that imitates human visual behavior in video saliency detection, the first and second subsampling layers are connected directly with the first fully connected layer. In addition, the mixed modes of pooling and normalization methods, rectified linear units (ReLU), and dropout are introduced to prevent overfitting and gradient diffusion. The learning process corresponding to the network structure is also illustrated. At present, there are no large-scale images of maize leaf disease for use as experimental samples. To test the proposed MCNN, 10,820 RGB images containing five types of disease were collected from maize planting areas in Shandong Province, China. The original images could not be used directly in identification experiments because of noise and irrelevant regions. They were therefore denoised and segmented by homomorphic filtering and region of interest (ROI) segmentation to construct a standard database. A series of experiments on 8 GB graphics processing units (GPUs) showed that the MCNN could achieve an average accuracy of 92.31% and a high efficiency in the identification of maize leaf diseases. The multichannel design and the integration of different innovations proved to be helpful methods for boosting performance. Keywords: Artificial intelligence, Convolutional neural network, Deep learning, Image classification, Machine learning algorithms, Maize leaf disease.


2021 ◽  
Author(s):  
S. Malliga ◽  
P. S. Nandhini ◽  
S. V. Kogilavani ◽  
R. Jaya Harini ◽  
S. Jaya Shree ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 692 ◽  
Author(s):  
Neelu Khare ◽  
Preethi Devan ◽  
Chiranji Chowdhary ◽  
Sweta Bhattacharya ◽  
Geeta Singh ◽  
...  

The enormous growth in internet usage has led to the development of different malicious software posing serious threats to computer security. The various computational activities carried out over the network have huge chances to be tampered and manipulated and this necessitates the emergence of efficient intrusion detection systems. The network attacks are also dynamic in nature, something which increases the importance of developing appropriate models for classification and predictions. Machine learning (ML) and deep learning algorithms have been prevalent choices in the analysis of intrusion detection systems (IDS) datasets. The issues pertaining to quality and quality of data and the handling of high dimensional data is managed by the use of nature inspired algorithms. The present study uses a NSL-KDD and KDD Cup 99 dataset collected from the Kaggle repository. The dataset was cleansed using the min-max normalization technique and passed through the 1-N encoding method for achieving homogeneity. A spider monkey optimization (SMO) algorithm was used for dimensionality reduction and the reduced dataset was fed into a deep neural network (DNN). The SMO based DNN model generated classification results with 99.4% and 92% accuracy, 99.5%and 92.7% of precision, 99.5% and 92.8% of recall and 99.6%and 92.7% of F1-score, utilizing minimal training time. The model was further compared with principal component analysis (PCA)-based DNN and the classical DNN models, wherein the results justified the advantage of implementing the proposed model over other approaches.


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

Sign in / Sign up

Export Citation Format

Share Document