Intrusion Detection Systems
Recently Published Documents


TOTAL DOCUMENTS

1554
(FIVE YEARS 718)

H-INDEX

47
(FIVE YEARS 21)

2022 ◽  
Vol 12 (2) ◽  
pp. 852
Author(s):  
Jesús Díaz-Verdejo ◽  
Javier Muñoz-Calle ◽  
Antonio Estepa Alonso ◽  
Rafael Estepa Alonso ◽  
Germán Madinabeitia

Signature-based Intrusion Detection Systems (SIDS) play a crucial role within the arsenal of security components of most organizations. They can find traces of known attacks in the network traffic or host events for which patterns or signatures have been pre-established. SIDS include standard packages of detection rulesets, but only those rules suited to the operational environment should be activated for optimal performance. However, some organizations might skip this tuning process and instead activate default off-the-shelf rulesets without understanding its implications and trade-offs. In this work, we help gain insight into the consequences of using predefined rulesets in the performance of SIDS. We experimentally explore the performance of three SIDS in the context of web attacks. In particular, we gauge the detection rate obtained with predefined subsets of rules for Snort, ModSecurity and Nemesida using seven attack datasets. We also determine the precision and rate of alert generated by each detector in a real-life case using a large trace from a public webserver. Results show that the maximum detection rate achieved by the SIDS under test is insufficient to protect systems effectively and is lower than expected for known attacks. Our results also indicate that the choice of predefined settings activated on each detector strongly influences its detection capability and false alarm rate. Snort and ModSecurity scored either a very poor detection rate (activating the less-sensitive predefined ruleset) or a very poor precision (activating the full ruleset). We also found that using various SIDS for a cooperative decision can improve the precision or the detection rate, but not both. Consequently, it is necessary to reflect upon the role of these open-source SIDS with default configurations as core elements for protection in the context of web attacks. Finally, we provide an efficient method for systematically determining which rules deactivate from a ruleset to significantly reduce the false alarm rate for a target operational environment. We tested our approach using Snort’s ruleset in our real-life trace, increasing the precision from 0.015 to 1 in less than 16 h of work.


2022 ◽  
Vol 2 (14) ◽  
pp. 45-54
Author(s):  
Nguyen Huy Trung ◽  
Le Hai Viet ◽  
Tran Duc Thang

Abstract—Nowadays, there have been many signature-based intrusion detection systems deployed and widely used. These systems are capable of detecting known attacks with low false alarm rates, fast detection times, and little system resource requirements. However, these systems are less effective against new attacks that are not included in the ruleset. In addition, recent studies provide a new approach to the problem of detecting unknown types of network attacks based on machine learning and deep learning. However, this new approach requires a lot of resources, processing time and has a high false alarm rate. Therefore, it is necessary to find a solution that combines the advantages of the two approaches above in the problem of detecting network attacks. In this paper, the authors present a method to automatically generate network attack detection rules for the IDS system based on the results of training machine learning models. Through testing, the author proves that the system that automatically generates network attack detection rules for IDS based on machine learning meets the requirements of increasing the ability to detect new types of attacks, ensuring automatic effective updates of new signs of network attacks. Tóm tắt—Ngày nay, đã có nhiều hệ thống phát hiện xâm nhập dựa trên chữ ký được triển khai và sử dụng rộng rãi. Các hệ thống này có khả năng phát hiện các cuộc tấn công đã biết với tỷ lệ báo động giả thấp, thời gian phát hiện nhanh và yêu cầu ít tài nguyên hệ thống. Tuy nhiên, các hệ thống này kém hiệu quả khi chống lại các cuộc tấn công mới không có trong tập luật. Các nghiên cứu gần đây cung cấp một cách tiếp cận mới cho vấn đề phát hiện các kiểu tấn công mạng mới dựa trên học máy và học sâu. Tuy nhiên, cách tiếp cận này đòi hỏi nhiều tài nguyên, thời gian xử lý. Vì vậy, cần tìm ra giải pháp kết hợp ưu điểm của hai cách tiếp cận trên trong bài toán phát hiện tấn công mạng. Trong bài báo này, nhóm tác giả trình bày phương pháp tự động sinh luật phát hiện tấn công mạng cho hệ thống phát hiện xâm nhập dựa trên kết quả huấn luyện mô hình học máy. Qua thử nghiệm, tác giả chứng minh rằng phương pháp này đáp ứng yêu cầu tăng khả năng phát hiện chính xác các kiểu tấn công mới, đảm bảo tự động cập nhật hiệu quả các dấu hiệu tấn công mạng mới vào tập luật.


2022 ◽  
Vol 19 ◽  
pp. 474-480
Author(s):  
Nevila Baci ◽  
Kreshnik Vukatana ◽  
Marius Baci

Small and medium enterprises (SMEs) are businesses that account for a large percentage of the economy in many countries, but they lack cyber security. The present study examines different supervised machine learning methods with a focus on intrusion detection systems (IDSs) that will help in improving SMEs’ security. The algorithms that are tested through a real dataset, are Naïve Bayes, Sequential minimal optimization (SMO), C4.5 decision tree, and Random Forest. The experiments are run using the Waikato Environment for Knowledge Analyses (WEKA) 3.8.4 tools and the metrics used to evaluate the results were: accuracy, false-positive rate (FPR), and total time to train and build a classification model. The results obtained from the original dataset with 130 features show a high value of accuracy, but the computation time to build the classification model was notably high for the cases of C4.5 (1 hr. and 20 mins) and SMO algorithm (4 hrs. and 20 mins). the Information Gain (IG) method was used and the result was impressive. The time needed to train the model was reduced in the order of a few minutes and the accuracy was high (above 95%). In the end, challenges that SMEs can have for choosing an IDS such as lack of scalability and autonomic self-adaptation, can be solved by using a correct methodology with machine learning techniques.


2022 ◽  
Vol 9 ◽  
Author(s):  
M. Akshay Kumaar ◽  
Duraimurugan Samiayya ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang ◽  
...  

The unbounded increase in network traffic and user data has made it difficult for network intrusion detection systems to be abreast and perform well. Intrusion Systems are crucial in e-healthcare since the patients' medical records should be kept highly secure, confidential, and accurate. Any change in the actual patient data can lead to errors in the diagnosis and treatment. Most of the existing artificial intelligence-based systems are trained on outdated intrusion detection repositories, which can produce more false positives and require retraining the algorithm from scratch to support new attacks. These processes also make it challenging to secure patient records in medical systems as the intrusion detection mechanisms can become frequently obsolete. This paper proposes a hybrid framework using Deep Learning named “ImmuneNet” to recognize the latest intrusion attacks and defend healthcare data. The proposed framework uses multiple feature engineering processes, oversampling methods to improve class balance, and hyper-parameter optimization techniques to achieve high accuracy and performance. The architecture contains <1 million parameters, making it lightweight, fast, and IoT-friendly, suitable for deploying the IDS on medical devices and healthcare systems. The performance of ImmuneNet was benchmarked against several other machine learning algorithms on the Canadian Institute for Cybersecurity's Intrusion Detection System 2017, 2018, and Bell DNS 2021 datasets which contain extensive real-time and latest cyber attack data. Out of all the experiments, ImmuneNet performed the best on the CIC Bell DNS 2021 dataset with about 99.19% accuracy, 99.22% precision, 99.19% recall, and 99.2% ROC-AUC scores, which are comparatively better and up-to-date than other existing approaches in classifying between requests that are normal, intrusion, and other cyber attacks.


Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 21
Author(s):  
Ruohao Zhang ◽  
Jean-Philippe Condomines ◽  
Emmanuel Lochin

The rapid development of Internet of Things (IoT) technology, together with mobile network technology, has created a never-before-seen world of interconnection, evoking research on how to make it vaster, faster, and safer. To support the ongoing fight against the malicious misuse of networks, in this paper we propose a novel algorithm called AMDES (unmanned aerial system multifractal analysis intrusion detection system) for spoofing attack detection. This novel algorithm is based on both wavelet leader multifractal analysis (WLM) and machine learning (ML) principles. In earlier research on unmanned aerial systems (UAS), intrusion detection systems (IDS) based on multifractal (MF) spectral analysis have been used to provide accurate MF spectrum estimations of network traffic. Such an estimation is then used to detect and characterize flooding anomalies that can be observed in an unmanned aerial vehicle (UAV) network. However, the previous contributions have lacked the consideration of other types of network intrusions commonly observed in UAS networks, such as the man in the middle attack (MITM). In this work, this promising methodology has been accommodated to detect a spoofing attack within a UAS. This methodology highlights a robust approach in terms of false positive performance in detecting intrusions in a UAS location reporting system.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Ghada Abdelmoumin ◽  
Jessica Whitaker ◽  
Danda B. Rawat ◽  
Abdul Rahman

An effective anomaly-based intelligent IDS (AN-Intel-IDS) must detect both known and unknown attacks. Hence, there is a need to train AN-Intel-IDS using dynamically generated, real-time data in an adversarial setting. Unfortunately, the public datasets available to train AN-Intel-IDS are ineluctably static, unrealistic, and prone to obsolescence. Further, the need to protect private data and conceal sensitive data features has limited data sharing, thus encouraging the use of synthetic data for training predictive and intrusion detection models. However, synthetic data can be unrealistic and potentially bias. On the other hand, real-time data are realistic and current; however, it is inherently imbalanced due to the uneven distribution of anomalous and non-anomalous examples. In general, non-anomalous or normal examples are more frequent than anomalous or attack examples, thus leading to skewed distribution. While imbalanced data are commonly predominant in intrusion detection applications, it can lead to inaccurate predictions and degraded performance. Furthermore, the lack of real-time data produces potentially biased models that are less effective in predicting unknown attacks. Therefore, training AN-Intel-IDS using imbalanced and adversarial learning is instrumental to their efficacy and high performance. This paper investigates imbalanced learning and adversarial learning for training AN-Intel-IDS using a qualitative study. It surveys and synthesizes generative-based data augmentation techniques for addressing the uneven data distribution and generative-based adversarial techniques for generating synthetic yet realistic data in an adversarial setting using rapid review, structured reporting, and subgroup analysis.


Author(s):  
P. Manoj Kumar ◽  
M. Parvathy ◽  
C. Abinaya Devi

Intrusion Detection Systems (IDS) is one of the important aspects of cyber security that can detect the anomalies in the network traffic. IDS are a part of Second defense line of a system that can be deployed along with other security measures such as access control, authentication mechanisms and encryption techniques to secure the systems against cyber-attacks. However, IDS suffers from the problem of handling large volume of data and in detecting zero-day attacks (new types of attacks) in a real-time traffic environment. To overcome this problem, an intelligent Deep Learning approach for Intrusion Detection is proposed based on Convolutional Neural Network (CNN-IDS). Initially, the model is trained and tested under a new real-time traffic dataset, CSE-CIC-IDS 2018 dataset. Then, the performance of CNN-IDS model is studied based on three important performance metrics namely, accuracy / training time, detection rate and false alarm rate. Finally, the experimental results are compared with those of various Deep Discriminative models including Recurrent Neural network (RNN), Deep Neural Network (DNN) etc., proposed for IDS under the same dataset. The Comparative results show that the proposed CNN-IDS model is very much suitable for modelling a classification model both in terms of binary and multi-class classification with higher detection rate, accuracy, and lower false alarm rate. The CNN-IDS model improves the accuracy of intrusion detection and provides a new research method for intrusion detection.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 198
Author(s):  
Mujaheed Abdullahi ◽  
Yahia Baashar ◽  
Hitham Alhussian ◽  
Ayed Alwadain ◽  
Norshakirah Aziz ◽  
...  

In recent years, technology has advanced to the fourth industrial revolution (Industry 4.0), where the Internet of things (IoTs), fog computing, computer security, and cyberattacks have evolved exponentially on a large scale. The rapid development of IoT devices and networks in various forms generate enormous amounts of data which in turn demand careful authentication and security. Artificial intelligence (AI) is considered one of the most promising methods for addressing cybersecurity threats and providing security. In this study, we present a systematic literature review (SLR) that categorize, map and survey the existing literature on AI methods used to detect cybersecurity attacks in the IoT environment. The scope of this SLR includes an in-depth investigation on most AI trending techniques in cybersecurity and state-of-art solutions. A systematic search was performed on various electronic databases (SCOPUS, Science Direct, IEEE Xplore, Web of Science, ACM, and MDPI). Out of the identified records, 80 studies published between 2016 and 2021 were selected, surveyed and carefully assessed. This review has explored deep learning (DL) and machine learning (ML) techniques used in IoT security, and their effectiveness in detecting attacks. However, several studies have proposed smart intrusion detection systems (IDS) with intelligent architectural frameworks using AI to overcome the existing security and privacy challenges. It is found that support vector machines (SVM) and random forest (RF) are among the most used methods, due to high accuracy detection another reason may be efficient memory. In addition, other methods also provide better performance such as extreme gradient boosting (XGBoost), neural networks (NN) and recurrent neural networks (RNN). This analysis also provides an insight into the AI roadmap to detect threats based on attack categories. Finally, we present recommendations for potential future investigations.


Sign in / Sign up

Export Citation Format

Share Document