Time-Frequency Analysis of Motor-Evoked Potential in Patients with Stroke vs Healthy Subjects: a Transcranial Magnetic Stimulation Study

2019 ◽  
Vol 1 (10) ◽  
pp. 764-780 ◽  
Author(s):  
Neha Singh ◽  
Megha Saini ◽  
Nand Kumar ◽  
K. K. Deepak ◽  
Sneh Anand ◽  
...  
2021 ◽  
Vol 15 ◽  
Author(s):  
Yanbing Jia ◽  
Xiaoyan Liu ◽  
Jing Wei ◽  
Duo Li ◽  
Chun Wang ◽  
...  

Objective: We aimed to examine the effects of repetitive peripheral nerve magnetic stimulation (rPNMS) on the excitability of the contralateral motor cortex and motor function of the upper limb in healthy subjects.Methods: Forty-six healthy subjects were randomly assigned to either a repetitive peripheral nerve magnetic stimulation group (n = 23) or a sham group (n = 23). The repetitive peripheral nerve magnetic stimulation group received stimulation using magnetic pulses at 20 Hz, which were applied on the median nerve of the non-dominant hand, whereas the sham group underwent the same protocol without the stimulation output. The primary outcome was contralateral transcranial magnetic stimulation (TMS)-induced corticomotor excitability for the abductor pollicis brevis of the stimulated hand in terms of resting motor threshold (rMT), the slope of recruitment curve, and peak amplitude of motor evoked potential (MEP), which were measured at baseline and immediately after each session. The secondary outcomes were motor hand function including dexterity and grip strength of the non-dominant hand assessed at baseline, immediately after stimulation, and 24 h post-stimulation.Results: Compared with the sham stimulation, repetitive peripheral nerve magnetic stimulation increased the peak motor evoked potential amplitude immediately after the intervention. The repetitive peripheral nerve magnetic stimulation also increased the slope of the recruitment curve immediately after intervention and enhanced hand dexterity after 24 h. However, the between-group difference for the changes was not significant. The significant changes in hand dexterity and peak amplitude of motor evoked potential after repetitive peripheral nerve magnetic stimulation were associated with their baseline value.Conclusions: Repetitive peripheral nerve magnetic stimulation may modulate the corticomotor excitability together with a possible lasting improvement in hand dexterity, indicating that it might be helpful for clinical rehabilitation.


Author(s):  
Donald L. Gilbert

This article discusses how transcranial magnetic stimulation (TMS) can be used to study the pathophysiological substrata of pediatric neurological and neurobehavioural disorders and to provide practical guidance for future research. It outlines the substantial challenges inherent in studying in vivo the neurobiology of pediatric neurobehavioural disorders, such as safety, quantitative versus categorical measures, and challenges in correlational studies. It discusses ways in which TMS generates quantitative measures that may function as endophenotypes for neurobehavioural disorders. Combining TMS with other modalities may also be informative. Single- and paired-pulse TMS is safe and well tolerated in children. The application of rigorous experimental designs and a combination of TMS with other research methods may increase the knowledge of pathophysiology and treatment of pediatric neurobehavioural disorders.


Sign in / Sign up

Export Citation Format

Share Document