scholarly journals Modulation of the Corticomotor Excitability by Repetitive Peripheral Magnetic Stimulation on the Median Nerve in Healthy Subjects

2021 ◽  
Vol 15 ◽  
Author(s):  
Yanbing Jia ◽  
Xiaoyan Liu ◽  
Jing Wei ◽  
Duo Li ◽  
Chun Wang ◽  
...  

Objective: We aimed to examine the effects of repetitive peripheral nerve magnetic stimulation (rPNMS) on the excitability of the contralateral motor cortex and motor function of the upper limb in healthy subjects.Methods: Forty-six healthy subjects were randomly assigned to either a repetitive peripheral nerve magnetic stimulation group (n = 23) or a sham group (n = 23). The repetitive peripheral nerve magnetic stimulation group received stimulation using magnetic pulses at 20 Hz, which were applied on the median nerve of the non-dominant hand, whereas the sham group underwent the same protocol without the stimulation output. The primary outcome was contralateral transcranial magnetic stimulation (TMS)-induced corticomotor excitability for the abductor pollicis brevis of the stimulated hand in terms of resting motor threshold (rMT), the slope of recruitment curve, and peak amplitude of motor evoked potential (MEP), which were measured at baseline and immediately after each session. The secondary outcomes were motor hand function including dexterity and grip strength of the non-dominant hand assessed at baseline, immediately after stimulation, and 24 h post-stimulation.Results: Compared with the sham stimulation, repetitive peripheral nerve magnetic stimulation increased the peak motor evoked potential amplitude immediately after the intervention. The repetitive peripheral nerve magnetic stimulation also increased the slope of the recruitment curve immediately after intervention and enhanced hand dexterity after 24 h. However, the between-group difference for the changes was not significant. The significant changes in hand dexterity and peak amplitude of motor evoked potential after repetitive peripheral nerve magnetic stimulation were associated with their baseline value.Conclusions: Repetitive peripheral nerve magnetic stimulation may modulate the corticomotor excitability together with a possible lasting improvement in hand dexterity, indicating that it might be helpful for clinical rehabilitation.

2016 ◽  
Vol 31 (4) ◽  
pp. 354-363
Author(s):  
Carrie L. Peterson ◽  
Lynn M. Rogers ◽  
Michael S. Bednar ◽  
Anne M. Bryden ◽  
Michael W. Keith ◽  
...  

Background. Following biceps transfer to enable elbow extension in individuals with tetraplegia, motor re-education may be facilitated by greater corticomotor excitability. Arm posture modulates corticomotor excitability of the nonimpaired biceps. If arm posture also modulates excitability of the transferred biceps, posture may aid in motor re-education. Objective. Our objective was to determine whether multi-joint arm posture affects corticomotor excitability of the transferred biceps similar to the nonimpaired biceps. We also aimed to determine whether corticomotor excitability of the transferred biceps is related to elbow extension strength and muscle length. Methods. Corticomotor excitability was assessed in 7 arms of individuals with tetraplegia and biceps transfer using transcranial magnetic stimulation and compared to biceps excitability of nonimpaired individuals. Single-pulse transcranial magnetic stimulation was delivered to the motor cortex with the arm in functional postures at rest. Motor-evoked potential amplitude was recorded via surface electromyography. Elbow moment was recorded during maximum isometric extension trials, and muscle length was estimated using a biomechanical model. Results. Arm posture modulated corticomotor excitability of the transferred biceps differently than the nonimpaired biceps. Elbow extension strength was positively related and muscle length was unrelated, respectively, to motor-evoked potential amplitude across the arms with biceps transfer. Conclusions. Corticomotor excitability of the transferred biceps is modulated by arm posture and may contribute to strength outcomes after tendon transfer. Future work should determine whether modulating corticomotor excitability via posture promotes motor re-education during the rehabilitative period following surgery.


2019 ◽  
Author(s):  
Rehab Abdelaal El-Nemr ◽  
Rania Ahmad Sweed ◽  
Hanaa Shafiek

AbstractBackground and objectivesRespiratory muscles dysfunction has been reported in COPD. Transcranial magnetic stimulation (TMS) is easy non-invasive that has been used for assessing the respiratory corticospinal pathways particularly of diaphragm. We aimed to study the cortico-diaphragmatic motor system changes in COPD using TMS and to correlate the findings with the pulmonary function.MethodsA case control study recruited 30 stable COPD from the out-patient respiratory clinic of Main Alexandria University hospital-Egypt and 17 healthy control subjects who were subjected to spirometry. Cortical conduction of the diaphragm was performed by TMS to all participants followed by cervical magnetic stimulation of the phrenic nerve roots. Diaphragmatic resting motor threshold (DRMT), cortical motor evoked potential latency (CMEPL), CMEP amplitude (CMEPA), peripheral motor evoked potential latency (PMEPL), PMEP amplitude (PMEPA) and central motor conduction time (CMCT) were measured.Results66.7% of COPD patients had severe and very severe COPD with median age of 59 (55-63) years. There was statistically significant bilateral decrease in DRMT, CMEPA and PMEPA in COPD group versus healthy subjects and significant increase in CMEPL and PMEPL (p <0.01). Left CMCT was significantly prolonged in COPD group versus healthy subjects (p <0.0001) but not right CMCT. Further, there was significant increase in CMEPL and CMCT of left versus right diaphragm in COPD group (p= 0.003 and 0.001 respectively) that inversely correlated with FEV1% and FVC% predicted.ConclusionCentral cortico-diaphragmatic motor system is affected in COPD patients with heterogeneity of both sides that is correlated with pulmonary function.SignificanceCoticospinal pathway affection could be a factor for development of diaphragmatic dysfunction in COPD patients accordingly its evaluation could help in personalization of COPD management especially pulmonary rehabilitation programs


2008 ◽  
Vol 14 (7) ◽  
pp. 995-998 ◽  
Author(s):  
G Koch ◽  
S Rossi ◽  
C Prosperetti ◽  
C Codecà ◽  
F Monteleone ◽  
...  

We tested the effects of 5-Hz repetitive transcranial magnetic stimulation (rTMS) over the motor cortex in multiple sclerosis (MS) subjects with cerebellar symptoms. rTMS improved hand dexterity in cerebellar patients ( n = 8) but not in healthy subjects ( n = 7), as detected by a significant transient reduction of the time required to complete the nine-hole pegboard task. rTMS of the motor cortex may be a useful approach to treat cerebellar impairment in MS patients.


Author(s):  
Donald L. Gilbert

This article discusses how transcranial magnetic stimulation (TMS) can be used to study the pathophysiological substrata of pediatric neurological and neurobehavioural disorders and to provide practical guidance for future research. It outlines the substantial challenges inherent in studying in vivo the neurobiology of pediatric neurobehavioural disorders, such as safety, quantitative versus categorical measures, and challenges in correlational studies. It discusses ways in which TMS generates quantitative measures that may function as endophenotypes for neurobehavioural disorders. Combining TMS with other modalities may also be informative. Single- and paired-pulse TMS is safe and well tolerated in children. The application of rigorous experimental designs and a combination of TMS with other research methods may increase the knowledge of pathophysiology and treatment of pediatric neurobehavioural disorders.


Sign in / Sign up

Export Citation Format

Share Document