Decentralized Fault-tolerant Control and Vibration Suppression for the Elastic-base Space Robot with Actuator Faults and Uncertain Dynamics

Author(s):  
Ronghua Lei ◽  
Li Chen
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yan-Hua Ma ◽  
Xian Du ◽  
Lin-Feng Gou ◽  
Si-Xin Wen

AbstractIn this paper, an active fault-tolerant control (FTC) scheme for turbofan engines subject to simultaneous multiplicative and additive actuator faults under disturbances is proposed. First, a state error feedback controller is designed based on interval observer as the nominal controller in order to achieve the model reference rotary speed tracking control for the fault-free turbofan engine under disturbances. Subsequently, a virtual actuator based reconfiguration block is developed aiming at preserving the consistent performance in spite of the occurrence of the simultaneous multiplicative and additive actuator faults. Moreover, to improve the performance of the FTC system, the interval observer is slightly modified without reconstruction of the state error feedback controller. And a theoretical sufficiency criterion is provided to ensure the stability of the proposed active FTC system. Simulation results on a turbofan engine indicate that the proposed active FCT scheme is effective despite of the existence of actuator faults and disturbances.


Author(s):  
Bingqian Li ◽  
Wenhan Dong ◽  
Xiaoshan Ma

In this paper, a backstepping fault-tolerant control based on sliding-mode observer is proposed for the unmanned thrust-vectoring aircraft (UTVA) control. First, the UTVA model with the uncertainty, control surface damage and actuator faults is described, which is divided into fast loop and slow loop. Next, the cascade observers including a high-order SMO and the discontinuous projection adaptive law are proposed to estimate the states with compensating the uncertainty and control surface damage, and the sliding-mode observer is designed to identify actuator faults and estimate fault parameters. Then, the backstepping fault-tolerant control combining the estimation of states and fault parameters is proposed to achieve the global fault-tolerant control, which compensates the uncertainty, control surface damage and actuator faults. Finally, simulation results are given to demonstrate the effectiveness for UTVA.


Sign in / Sign up

Export Citation Format

Share Document