boundary estimation
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 28)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 13 (23) ◽  
pp. 4941
Author(s):  
Rukhshanda Hussain ◽  
Yash Karbhari ◽  
Muhammad Fazal Ijaz ◽  
Marcin Woźniak ◽  
Pawan Kumar Singh ◽  
...  

Recently, deep learning-based methods, especially utilizing fully convolutional neural networks, have shown extraordinary performance in salient object detection. Despite its success, the clean boundary detection of the saliency objects is still a challenging task. Most of the contemporary methods focus on exclusive edge detection modules in order to avoid noisy boundaries. In this work, we propose leveraging on the extraction of finer semantic features from multiple encoding layers and attentively re-utilize it in the generation of the final segmentation result. The proposed Revise-Net model is divided into three parts: (a) the prediction module, (b) a residual enhancement module, and (c) reverse attention modules. Firstly, we generate the coarse saliency map through the prediction modules, which are fine-tuned in the enhancement module. Finally, multiple reverse attention modules at varying scales are cascaded between the two networks to guide the prediction module by employing the intermediate segmentation maps generated at each downsampling level of the REM. Our method efficiently classifies the boundary pixels using a combination of binary cross-entropy, similarity index, and intersection over union losses at the pixel, patch, and map levels, thereby effectively segmenting the saliency objects in an image. In comparison with several state-of-the-art frameworks, our proposed Revise-Net model outperforms them with a significant margin on three publicly available datasets, DUTS-TE, ECSSD, and HKU-IS, both on regional and boundary estimation measures.


2021 ◽  
Vol 6 (4) ◽  
pp. 7169-7176
Author(s):  
Walid Amehri ◽  
Gang Zheng ◽  
Alexandre Kruszewski

2021 ◽  
Author(s):  
Michal Mandlik ◽  
Vladimir Brazda ◽  
Martin Paclik ◽  
Milan Kvicera ◽  
Naiallen Carvalho ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Ho Kang ◽  
Kiwan Jeon ◽  
Sang-Hoon Kang ◽  
Sang-Hwy Lee

AbstractThe lengthy time needed for manual landmarking has delayed the widespread adoption of three-dimensional (3D) cephalometry. We here propose an automatic 3D cephalometric annotation system based on multi-stage deep reinforcement learning (DRL) and volume-rendered imaging. This system considers geometrical characteristics of landmarks and simulates the sequential decision process underlying human professional landmarking patterns. It consists mainly of constructing an appropriate two-dimensional cutaway or 3D model view, then implementing single-stage DRL with gradient-based boundary estimation or multi-stage DRL to dictate the 3D coordinates of target landmarks. This system clearly shows sufficient detection accuracy and stability for direct clinical applications, with a low level of detection error and low inter-individual variation (1.96 ± 0.78 mm). Our system, moreover, requires no additional steps of segmentation and 3D mesh-object construction for landmark detection. We believe these system features will enable fast-track cephalometric analysis and planning and expect it to achieve greater accuracy as larger CT datasets become available for training and testing.


Geophysics ◽  
2021 ◽  
pp. 1-34
Author(s):  
Roland Karcol ◽  
Roman Pašteka

The Tikhonov regularized approach to the downward continuation of potential fields is a partial but strong answer to the instability and ambiguity of the inverse problem solution in studies of applied gravimetry and magnetometry. The task is described with two functionals, which incorporate the properties of the desired solution, and it is solved as a minimization problem in the Fourier domain. The result is a filter in which the high-pass component is damped by a stabilizing condition, which is controlled by a regularization parameter (RP) — this parameter setting is the crucial step in the regularization approach. The ability of using the values of the functionals themselves as the tool for RP setting in the comparison with commonly used tools such as various types of LP norms is demonstrated, as well as their possible role in the source’s upper boundary estimation. The presented method is tested in a complex synthetic data test and is then applied to real detailed magnetic data from an unexploded ordnance survey and regional gravity data as well to verify its usability.


Sign in / Sign up

Export Citation Format

Share Document