scholarly journals An integrated open-loop supply chain network configuration model with sustainable supplier selection: fuzzy multi-objective approach

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Ahmet Çalık
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Reza Ehtesham Rasi ◽  
Mehdi Sohanian

Purpose The purpose of this paper is to design and optimize economic and environmental dimensions in a sustainable supply chain (SSC) network. This paper developed a mixed-integer linear programing (MILP) model to incorporate economical and environmental data for multi-objective optimization of the SSC network. Design/methodology/approach The overall objective of the present study is to use high-quality raw materials, at the same time the lowest amount of pollution emission and the highest profitability is achieved. The model in the problem is solved using two algorithms, namely, multi-objective genetic and multi-objective particle swarm. In this research, to integrate sustainable supplier selection and optimization of sustainability performance indicators in supply chain network design considering minimization of cost and time and maximization of sustainability indexes of the system. Findings The differences found between the genetic algorithms (GAs) and the MILP approaches can be explained by handling the constraints and their various logics. The solutions are contrasted with the original crisp model based on either MILP or GA, offering more robustness to the proposed approach. Practical implications The model is applied to Mega Motor company to optimize the sustainability performance of the supply chain i.e. economic (cost), social (time) and environmental (pollution of raw material). The research method has two approaches, namely, applied and mathematical modeling. Originality/value There is limited research designing and optimizing the SSC network. This study is among the first to integrate sustainable supplier selection and optimization of sustainability performance indicators in supply chain network design considering minimization of cost and time and maximization of sustainability indexes of the system.


Author(s):  
Nurullah UMARUSMAN

Supply chain management is going on changing and developing in line with the needs of the growing global supply chain. Performance of supply chain, considered as a whole so that businesses can accommodate these evolvements and change, needs to be improved in the long run. Actually, businesses work with suppliers complying with their policies from past to present. However, other dimensions of sustainability should be considered, as well as economic criteria when selecting suppliers. With the right supplier selection made in this respect, by contributing to the efficient functioning of the supply chain, it will increase customer satisfaction, and therefore, the enterprises will reach the goals they set. The solution of the multi-objective sustainable supplier selection problem has been realized by using the “satisfied optimal supplier design” algorithm, also called fuzzy goal programming, with de novo-based interval type-2 proposed in this study.


2018 ◽  
Vol 13 (3) ◽  
pp. 605-625 ◽  
Author(s):  
Mohammad Khalilzadeh ◽  
Hadis Derikvand

Purpose Globalization of markets and pace of technological change have caused the growing importance of paying attention to supplier selection problem. Therefore, this study aims to choose the best suppliers by providing a mathematical model for the supplier selection problem considering the green factors and stochastic parameters. This paper aims to propose a multi-objective model to identify optimal suppliers for a green supply chain network under uncertainty. Design/methodology/approach The objective of this model is to select suppliers considering total cost, total quality parts and total greenhouse gas emissions. Also, uncertainty is tackled by stochastic programming, and the multi-objective model is solved as a single-objective model by the LP-metric method. Findings Twelve numerical examples are provided, and a sensitivity analysis is conducted to demonstrate the effectiveness of the developed mathematical model. Results indicate that with increasing market numbers and final product numbers, the total objective function value and run time increase. In case that decision-makers are willing to deal with uncertainty with higher reliability, they should consider whole environmental conditions as input parameters. Therefore, when the number of scenarios increases, the total objective function value increases. Besides, the trade-off between cost function and other objective functions is studied. Also, the benefit of the stochastic programming approach is proved. To show the applicability of the proposed model, different modes are defined and compared with the proposed model, and the results demonstrate that the increasing use of recyclable parts and application of the recycling strategy yield more economic savings and less costs. Originality/value This paper aims to present a more comprehensive model based on real-world conditions for the supplier selection problem in green supply chain under uncertainty. In addition to economic issue, environmental issue is considered from different aspects such as selecting the environment-friendly suppliers, purchasing from them and taking the probability of defective finished products and goods from suppliers into account.


Author(s):  
Shiva Zandkarimkhani ◽  
Mohammad Mahdi Nasiri ◽  
Jafar Heydari

Sign in / Sign up

Export Citation Format

Share Document