scholarly journals Solving for the random component time-fractional partial differential equations with the new Sumudu transform iterative method

2020 ◽  
Vol 2 (6) ◽  
Author(s):  
Halil Anaç ◽  
Mehmet Merdan ◽  
Tülay Kesemen
2011 ◽  
Vol 16 (4) ◽  
pp. 403-414 ◽  
Author(s):  
Hüseyin Koçak ◽  
Ahmet Yıldırım

In this paper, a new iterative method (NIM) is used to obtain the exact solutions of some nonlinear time-fractional partial differential equations. The fractional derivatives are described in the Caputo sense. The method provides a convergent series with easily computable components in comparison with other existing methods.


2021 ◽  
Vol 26 (3) ◽  
pp. 163-176
Author(s):  
M. Paliivets ◽  
E. Andreev ◽  
A. Bakshtanin ◽  
D. Benin ◽  
V. Snezhko

Abstract This paper presents the results of applying a new iterative method to linear and nonlinear fractional partial differential equations in fluid mechanics. A numerical analysis was performed to find an exact solution of the fractional wave equation and fractional Burgers’ equation, as well as an approximate solution of fractional KdV equation and fractional Boussinesq equation. Fractional derivatives of the order α are described using Caputo's definition with 0 < α ≤ 1 or 1 < α ≤ 2. A comparative analysis of the results obtained using a new iterative method with those obtained by the Adomian decomposition method showed the first method to be more efficient and simple, providing accurate results in fewer computational operations. Given its flexibility and ability to solve nonlinear equations, the iterative method can be used to solve more complex linear and nonlinear fractional partial differential equations.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
A. A. Hemeda

An extension of the so-called new iterative method (NIM) has been used to handle linear and nonlinear fractional partial differential equations. The main property of the method lies in its flexibility and ability to solve nonlinear equations accurately and conveniently. Therefore, a general framework of the NIM is presented for analytical treatment of fractional partial differential equations in fluid mechanics. The fractional derivatives are described in the Caputo sense. Numerical illustrations that include the fractional wave equation, fractional Burgers equation, fractional KdV equation, fractional Klein-Gordon equation, and fractional Boussinesq-like equation are investigated to show the pertinent features of the technique. Comparison of the results obtained by the NIM with those obtained by both Adomian decomposition method (ADM) and the variational iteration method (VIM) reveals that the NIM is very effective and convenient. The basic idea described in this paper is expected to be further employed to solve other similar linear and nonlinear problems in fractional calculus.


2018 ◽  
Vol 7 (3) ◽  
pp. 229-235 ◽  
Author(s):  
Amit Prakash ◽  
Hardish Kaur

AbstractIn present work, nonlinear fractional partial differential equations namely transport equation and Fokker-Planck equation involving local fractional differential operators, are investigated by means of the local fractional homotopy perturbation Sumudu transform method. The proposed method is a coupling of homotopy perturbation method with local fractional Sumudu transform and is used to describe the non-differentiable problems. Numerical simulation results are projected to show the efficiency of the proposed technique.


2020 ◽  
Vol 4 (2) ◽  
pp. 21 ◽  
Author(s):  
Dumitru Baleanu ◽  
Hassan Kamil Jassim

In this study, we examine adapting and using the Sumudu decomposition method (SDM) as a way to find approximate solutions to two-dimensional fractional partial differential equations and propose a numerical algorithm for solving fractional Riccati equation. This method is a combination of the Sumudu transform method and decomposition method. The fractional derivative is described in the Caputo sense. The results obtained show that the approach is easy to implement and accurate when applied to various fractional differential equations.


Sign in / Sign up

Export Citation Format

Share Document