A Minimum Distance Lack-of-Fit Test in a Markovian Multiplicative Error Model

2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Hira L. Koul ◽  
Indeewara Perera
Metrika ◽  
2014 ◽  
Vol 78 (2) ◽  
pp. 119-143 ◽  
Author(s):  
Hira L. Koul ◽  
Donatas Surgailis ◽  
Nao Mimoto

2014 ◽  
Vol 72 (1) ◽  
pp. 130-136 ◽  
Author(s):  
Saang-Yoon Hyun ◽  
Mark N. Maunder ◽  
Brian J. Rothschild

Abstract Many fish stock assessments use a survey index and assume a stochastic error in the index on which a likelihood function of associated parameters is built and optimized for the parameter estimation. The purpose of this paper is to evaluate the assumption that the standard deviation for the difference in the log-transformed index is approximately equal to the coefficient of variation of the index, and also to examine the homo- and heteroscedasticity of the errors. The traditional practice is to assume a common variance of the index errors over time for estimation convenience. However, if additional information is available about year-to-year variability in the errors, such as year-to-year coefficient of variation, then we suggest that the heteroscedasticity assumption should be considered. We examined five methods with the assumption of a multiplicative error in the survey index and two methods with that of an additive error in the index: M1, homoscedasticity in the multiplicative error model; M2, heteroscedasticity in the multiplicative error model; M3, M2 with approximate weighting and an additional parameter for scaling variance; M4–M5, pragmatic practices; M6, homoscedasticity in the additive error model; M7, heteroscedasticity in the additive error model. M1–M2 and M6–M7 are strictly based on statistical theories, whereas M3–M5 are not. Heteroscedasticity methods M2, M3, and M7 consistently outperformed the other methods. However, we select M2 as the best method. M3 requires one more parameter than M2. M7 has problems arising from the use of the raw scale as opposed to the logarithm transformation. Furthermore, the fitted survey index in M7 can be negative although its domain is positive.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3308 ◽  
Author(s):  
Swasti Khuntia ◽  
Jose Rueda ◽  
Mart van der Meijden

Long-term electricity load forecasting plays a vital role for utilities and planners in terms of grid development and expansion planning. An overestimate of long-term electricity load will result in substantial wasted investment on the construction of excess power facilities, while an underestimate of the future load will result in insufficient generation and inadequate demand. As a first of its kind, this research proposes the use of a multiplicative error model (MEM) in forecasting electricity load for the long-term horizon. MEM originates from the structure of autoregressive conditional heteroscedasticity (ARCH) model where conditional variance is dynamically parameterized and it multiplicatively interacts with an innovation term of time-series. Historical load data, as accessed from a United States (U.S.) regional transmission operator, and recession data, accessed from the National Bureau of Economic Research, are used in this study. The superiority of considering volatility is proven by out-of-sample forecast results as well as directional accuracy during the great economic recession of 2008. Historical volatility is used to account for implied volatility. To incorporate future volatility, backtesting of MEM is performed. Two performance indicators used to assess the proposed model are: (i) loss functions in terms of mean absolute percentage error and mean squared error (for both in-sample model fit and out-of-sample forecasts) and (ii) directional accuracy.


2012 ◽  
Vol 28 (6) ◽  
pp. 1283-1312 ◽  
Author(s):  
Hira L. Koul ◽  
Indeewara Perera ◽  
Mervyn J. Silvapulle

AbstractThe family of multiplicative error models, introduced by Engle (2002, Journal of Applied Econometrics 17, 425–446), has attracted considerable attention in recent literature for modeling positive random variables, such as the duration between trades at a stock exchange, volume transactions, and squared log returns. Such models are also applicable to other positive variables such as waiting time in a queue, daily/hourly rainfall, and demand for electricity. This paper develops a new method for testing the lack-of-fit of a given parametric multiplicative error model having a Markov structure. The test statistic is of Kolmogorov–Smirnov type based on a particular martingale transformation of a marked empirical process. The test is asymptotically distribution free, is consistent against a large class of fixed alternatives, and has nontrivial asymptotic power against a class of nonparametric local alternatives converging to the null hypothesis at the rate of O (n–1/2). In a simulation study, the test performed better overall than the general purpose Ljung–Box Q-test, a Lagrange multiplier type test, and a generalized moment test. We illustrate the testing procedure by considering two data examples.


Sign in / Sign up

Export Citation Format

Share Document