northern hemispheric
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 51)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Martin Radenz ◽  
Patric Seifert ◽  
Johannes Bühl ◽  
Holger Baars ◽  
Ronny Engelmann ◽  
...  

<p>We will present a study on the impacts of orographic waves, surface coupling, and aerosol load on the frequency of heterogeneous ice formation in stratiform clouds using ground-based remote-sensing observations. Disentangling the convoluted effects of vertical motions and aerosols is critical for the understanding of heterogeneous ice formation and requires comprehensive observations. For the study, multi-year datasets from Punta Arenas (53.1°S 70.9°W, Chile, >2 years) and the northern hemispheric sites of Leipzig (51.4°N 12.4°E, Germany, 2.6 years) and Limassol (34.7°N 33.0°E, Cyprus, 1.5 years) were obtained by the same set of ground-based instruments (35-GHz cloud radar, Raman polarization lidar, 14-channel microwave radiometer, Doppler lidar, and disdrometer). The datasets at Limassol and Punta Arenas resemble the first multi-year ground-based remote-sensing datasets in the Eastern Mediterranean and in the western part of the Southern Ocean, respectively.</p> <p>The cloud properties were extracted from the synergistic dataset and the following key results on the efficiency of heterogeneous ice formation emerged:<br />The apparent lack of ice forming clouds at Punta Arenas below -15 <strong>°</strong>C can be related to orographic gravity waves, which allow persistent liquid saturation. These clouds could be identified by the autocorrelation function of the in-cloud vertical air velocity. Additionally, a correlation between the surface-coupling of a cloud and the likelihood of ice formation was found for Punta Arenas and Leipzig. At T>-10°C clouds coupled to the aerosol-rich boundary layer, were found to contain ice more frequently. Taking both effects into account, free-tropospheric, fully turbulent clouds at Punta Arenas form ice less frequently than their northern-hemispheric counterparts. This difference is linked to the lower abundance of INP in the free troposphere over the Southern Ocean.</p>


MAUSAM ◽  
2021 ◽  
Vol 49 (1) ◽  
pp. 45-58
Author(s):  
M. RAJEEVAN

Anthropogenic sulphate aerosol particles scatter incoming solar radiation thereby perturbing the radiative budget, hence climate. We have used a three dimensional radiative transfer model together with the sulphate concentration fields simulated by two independent chemistry-transport models to calculate the annual cycle of the radiative forcing due to anthropogenic sulphate aerosol. The calculated forcing pattern shows large peaks over the eastern United States, southeast Europe and eastern China. The calculated annual global-mean radiative forcing is -0.50 Wm-2 for Langner and Rodhe (1991) data and -0.49 Wm-2 for Penner et el. [1994 (a&b)] data. The forcing was found to vary with season, with a larger forcing during northern hemispheric summer than winter. Sulphate aerosol also appreciably perturbs the lower tropospheric heating rates over northern hemispheric mid-latitudes. The forcing was also found to be sensitive to the global cloud cover and to the optical properties of the aerosol. The possible sources of the differences in magnitude with previous estimates are discussed. Over northern hemispheric mid-latitudes, the negative radiative forcing due to the direct effect of aerosols appreciably offsets the positive forcing due to increase in greenhouse gases. A 26-layer radiative-convective model (RCM) was also used to examine the equilibrium temperature profiles due to sulphate aerosols and increase in greenhouse gases. It was found that the effect of sulphate aerosols is the cooling of surface-troposphere system. Sulphate aerosols reduce the tropospheric warming and enhance the stratospheric cooling caused by increase in greenhouse gases.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Laurie Menviel ◽  
Aline Govin ◽  
Arthur Avenas ◽  
Katrin J. Meissner ◽  
Katharine M. Grant ◽  
...  

AbstractDuring orbital precession minima, the Sahara was humid and more vegetated, providing potential corridors for Hominins migration. Uncertainties remain over the climatic processes controlling the initiation, demise and amplitude of these African Humid Periods. Here we study these processes using a series of transient simulations of the penultimate deglaciation and Last Interglacial period, and compare the results with a transient simulation of the last deglaciation and Holocene. We find that the strengthening of the Atlantic Meridional Overturning Circulation at the end of deglacial millennial-scale events exerts a dominant control on the abrupt initiation of African Humid Periods as the Atlantic Meridional Overturning Circulation modulates the position of the Intertropical Convergence Zone. In addition, residual Northern Hemispheric ice-sheets can delay the peak of the African Humid Period. Through its impact on Northern Hemispheric ice-sheets disintegration and thus Atlantic Meridional Overturning Circulation, the larger rate of insolation increase during the penultimate compared to the last deglaciation can explain the earlier and more abrupt onset of the African Humid Period during the Last Interglacial period. Finally, we show that the mean climate state modulates precipitation variability, with higher variability under wetter background conditions.


2021 ◽  
Vol 118 (46) ◽  
pp. e2020260118
Author(s):  
Maayan Yehudai ◽  
Joohee Kim ◽  
Leopoldo D. Pena ◽  
Maria Jaume-Seguí ◽  
Karla P. Knudson ◽  
...  

The causes of the Mid-Pleistocene Transition, the shift from ∼41-ky to 100-ky interglacial–glacial cycles and more intense ice ages, remain intensely debated, as this fundamental change occurred between ∼1,250 and 650 ka without substantial changes in astronomical climate forcings. Recent studies disagree about the relative importance of events and processes in the Northern and Southern Hemispheres, as well as whether the shift occurred gradually over several interglacial–glacial cycles or abruptly at ∼900 ka. We address these issues using a north-to-south reconstruction of the Atlantic arm of the global meridional overturning ocean circulation, a primary means for distributing heat around the globe, using neodymium (Nd) isotopes. Results reveal a period of intense erosion affecting the cratonic shields surrounding the North Atlantic between Marine Isotope Stages (MIS) 27 and 25 (∼980 and 950 ka), reflected by unusually low Nd isotope ratios in deep North Atlantic seawater. This episode preceded a major ocean circulation weakening between MIS 25 and 21 (950 and 860 ka) that coincided with the first ∼100-ky-long interglacial–glacial onset of Northern Hemisphere glaciation at around 2.4 to 2.8 Ma. The data point to a Northern Hemisphere–sourced initiation for the transition, possibly induced through regolith loss and increased exposure of the crystalline bedrock, which would lead to increased friction, enabling larger ice sheets that are characteristic of the 100-ky interglacial–glacial cycles.


2021 ◽  
Vol 21 (19) ◽  
pp. 15153-15170
Author(s):  
Hélène Angot ◽  
Connor Davel ◽  
Christine Wiedinmyer ◽  
Gabrielle Pétron ◽  
Jashan Chopra ◽  
...  

Abstract. Atmospheric non-methane hydrocarbons (NMHCs) play an important role in the formation of secondary organic aerosols and ozone. After a multidecadal global decline in atmospheric mole fractions of ethane and propane – the most abundant atmospheric NMHCs – previous work has shown a reversal of this trend with increasing atmospheric abundances from 2009 to 2015 in the Northern Hemisphere. These concentration increases were attributed to the unprecedented growth in oil and natural gas (O&NG) production in North America. Here, we supplement this trend analysis building on the long-term (2008–2010; 2012–2020) high-resolution (∼3 h) record of ambient air C2–C7 NMHCs from in situ measurements at the Greenland Environmental Observatory at Summit station (GEOSummit, 72.58 ∘ N, 38.48 ∘ W; 3210 m above sea level). We confirm previous findings that the ethane mole fraction significantly increased by +69.0 [+47.4, +73.2; 95 % confidence interval] ppt yr−1 from January 2010 to December 2014. Subsequent measurements, however, reveal a significant decrease by −58.4 [−64.1, −48.9] ppt yr−1 from January 2015 to December 2018. A similar reversal is found for propane. The upturn observed after 2019 suggests, however, that the pause in the growth of atmospheric ethane and propane might only have been temporary. Discrete samples collected at other northern hemispheric baseline sites under the umbrella of the NOAA cooperative global air sampling network show a similar decrease in 2015–2018 and suggest a hemispheric pattern. Here, we further discuss the potential contribution of biomass burning and O&NG emissions (the main sources of ethane and propane) and conclude that O&NG activities likely played a role in these recent changes. This study highlights the crucial need for better constrained emission inventories.


2021 ◽  
Author(s):  
Daniel J. Ruiz ◽  
Michael J. Prather

Abstract. Stratosphere-troposphere exchange (STE) is an important source of tropospheric ozone, affecting all of atmospheric chemistry, climate, and air quality. Observations and the theory of tracer correlations provide only coarse (±20 %) global-mean constraints. For fluxes resolved by latitude and month we rely on global chemistry-transport models (CTMs), and unfortunately, these results diverge greatly. Overall, we lack guidance from model-measurement metrics that inform us about processes and patterns related to the STE flux of ozone. In this work, we use modeled tracers (N2O, CFCl3) whose distributions and budgets can be constrained by satellite and surface observations, allowing us to follow stratospheric signals across the tropopause. The satellite derived photochemical loss of N2O on annual and quasi-biennial cycles can be matched by the models. The STE flux of N2O-depleted air in our CTM drives surface variability that closely matches observed fluctuations on both annual and quasi-biennial cycles, confirming the modeled flux. The observed tracer correlations between N2O and O3 in the lowermost stratosphere provide a seasonal, hemispheric scaling of the N2O flux to that of O3. For N2O and CFCl3, we model greater southern hemispheric STE fluxes, a result supported by some metrics, but counter to prevailing theory of wave-driven stratospheric circulation. The STE flux of O3, however, is predominantly northern hemispheric, but observational constraints show that this is only caused by the Antarctic ozone hole. Here we show that metrics founded on observations can better constrain the STE O3 flux which will help guide future model assessments.


2021 ◽  
Vol 2 (3) ◽  
pp. 631-651
Author(s):  
Thorsten Kaluza ◽  
Daniel Kunkel ◽  
Peter Hoor

Abstract. A climatology of the occurrence of strong wind shear in the upper troposphere–lower stratosphere (UTLS) is presented, which gives rise to defining a tropopause shear layer (TSL). Strong wind shear in the tropopause region is of interest because it can generate turbulence, which can lead to cross-tropopause mixing. The analysis is based on 10 years of daily northern hemispheric ECMWF ERA5 reanalysis data. The vertical extent of the region analyzed is limited to the altitudes from 1.5 km above the surface up to 25 km, to exclude the planetary boundary layer as well as strong wind shear in higher atmospheric layers like the mesosphere–lower thermosphere. A threshold value of St2=4×10-4s-2 of the squared vertical shear of the horizontal wind is applied, which marks the top end of the distribution of atmospheric wind shear to focus on situations which cannot be sustained by the mean static stability in the troposphere according to linear theory. This subset of the vertical wind shear spectrum is analyzed for its vertical, geographical, and seasonal occurrence frequency distribution. A set of metrics is defined to narrow down the relation to planetary circulation features, as well as indicators for momentum-gradient-sharpening mechanisms. The vertical distribution reveals that strong vertical wind shear above the threshold occurs almost exclusively at tropopause altitudes, within a vertically confined layer of about 1–2 km in extent directly above the local lapse rate tropopause. The TSL emerges as a distinct feature in the tropopause-based 10-year temporal and zonal mean climatology, spanning from the tropics to latitudes around 70∘ N, with average occurrence frequencies on the order of 1 %–10 %. The horizontal distribution of the strong vertical wind shear near the tropopause exhibits distinctly separated regions of occurrence, which are generally associated with jet streams and their seasonality. At midlatitudes, strong wind shear values occur most frequently in regions with an elevated tropopause and at latitudes around 50∘ N, associated with jet streaks within northward-reaching ridges of baroclinic waves. At lower latitudes in the region of the subtropical jet stream, which is mainly apparent over the east Asian continent, the occurrence frequency of strong wind shear near the tropopause reaches maximum values of about 30 % during winter and is tightly linked to the jet stream seasonality. The interannual variability of the occurrence frequency for strong wind shear might furthermore be linked to the variability of the zonal location and strength of the jet. The east-equatorial region features a bi-annual seasonality in the occurrence frequencies of strong vertical wind shear near the tropopause. During the summer months, large areas of the tropopause region over the Indian Ocean are up to 70 % of the time exposed to strong wind shear, which can be attributed to the emergence of the tropical easterly jet. During winter, this occurrence frequency maximum shifts eastward over the maritime continent, where it is exceptionally pronounced during the DJF 2010/11 La Niña phase, as well as quite weak during the El Niño phases of 2009/10, 2014/15, and 2015/16. This agrees with the atmospheric response of the Pacific Walker circulation cell in the El Niño–Southern Oscillation (ENSO) ocean–atmosphere coupling.


2021 ◽  
Author(s):  
Patricio Velasquez ◽  
Martina Messmer ◽  
Christoph C. Raible

Abstract. In this study, we investigate the sensitivity of the glacial Alpine hydro-climate to northern hemispheric and local ice-sheet changes. Bridging the scale gap by using a chain of global and regional climate models, we perform sensitivity simulations of up to 2 km horizontal resolution over the Alps for the Last Glacial Maximum (LGM) and the Marine Isotope Stage 4 (MIS4). In winter, we find wetter conditions in the southern part of the Alps during LGM compared to present day, to which dynamical processes, i.e., changes in the wind speed and direction, substantially contribute. During summer, we find the expected drier conditions in most of the Alpine region during LGM, as thermodynamics suggests drier conditions under lower temperatures. The MIS4 climate shows enhanced winter precipitation compared to the LGM, which is explain by its warmer climate compared to the LGM – thus, again explained by thermodynamics. The sensitivity simulations of the northern hemispheric ice-sheet changes show that an increase of the ice-sheet thickness leads to a significant intensification of glacial Alpine hydro-climate conditions, which is mainly explained by dynamical processes. Changing only the Fennoscandian ice sheet is less influential on the Alpine precipitation, whereas modifications in the local Alpine ice-sheet topography significantly alter the Alpine precipitation, in particular we find a reduction of summer precipitation at the southern face of the Alps when lowering the Alpine ice sheet. The findings demonstrate that the northern hemispheric and local ice-sheet topography play an important role in regulating the Alpine hydro-climate and thus permits a better understanding of the precipitation patterns in the complex Alpine terrain at glacial times.


2021 ◽  
Vol 18 (10) ◽  
pp. 3219-3241
Author(s):  
Martina Franz ◽  
Sönke Zaehle

Abstract. Tropospheric ozone (O3) and nitrogen deposition affect vegetation growth and, thereby, the ability of the land biosphere to take up and store carbon. However, the magnitude of these effects on the contemporary and future terrestrial carbon balance is insufficiently understood. Here, we apply an extended version of the O–CN terrestrial biosphere model that simulates the atmosphere to canopy transport of O3, its surface and stomatal uptake, the O3-induced leaf injury, and the coupled terrestrial carbon and nitrogen cycles. We use this model to simulate past and future impacts of air pollution against a background of concurrent changes in climate and carbon dioxide concentrations (CO2) for two contrasting representative concentration pathway (RCP) scenarios (RCP2.6 and RCP8.5). The simulations show that O3-related damage considerably reduced northern hemispheric gross primary production (GPP) and long-term carbon storage between 1850 and the 2010s. The simulated O3 effect on GPP in the Northern Hemisphere peaked towards the end of the 20th century, with reductions of 4 %, causing a reduction in the northern hemispheric carbon sink of 0.4 Pg C yr−1. During the 21st century, O3-induced reductions in GPP and carbon storage are projected to decline, through a combination of direct air pollution control methods that reduce near-surface O3 and the indirect effects of rising atmospheric CO2, which reduces stomatal uptake of O3 concurrent with increases of leaf-level water use efficiency. However, in hot spot regions such as East Asia, the model simulations suggest a sustained decrease in GPP by more than 8 % throughout the 21st century. O3 exposure reduces projected carbon storage at the end of the 21st century by up to 15 % in parts of Europe, the US, and East Asia. Our simulations suggest that the stimulating effect of nitrogen deposition on regional GPP and carbon storage is lower in magnitude compared to the detrimental effect of O3 during most of the simulation period for both RCPs. In the second half of the 21st century, the detrimental effect of O3 on GPP is outweighed by nitrogen deposition, but the effect of nitrogen deposition on land carbon storage remains lower than the effect of O3. Accounting for the stimulating effects of nitrogen deposition but omitting the detrimental effect of O3 may lead to an overestimation of projected carbon uptake and storage.


2021 ◽  
Author(s):  
Marina Friedel ◽  
Gabriel Chiodo ◽  
Andrea Stenke ◽  
Daniela Domeisen ◽  
Stephan Fueglistaler ◽  
...  

Abstract Massive spring ozone loss due to anthropogenic emissions of ozone depleting substances is not limited to the austral hemisphere, but can also occur in the Arctic. Previous studies have suggested a link between springtime Arctic ozone depletion and Northern Hemispheric surface climate, which might add surface predictability. However, so far it has not been possible to isolate the role of stratospheric ozone from dynamical downward impacts. For the first time, we quantify the impact of springtime Arctic ozone depletion on surface climate using observations and targeted chemistry-climate model experiments to isolate the effects of ozone feedbacks. We find that springtime stratospheric ozone depletion is followed by surface anomalies in precipitation and temperature resembling a positive Arctic Oscillation. Most notably, we show that these anomalies, affecting large portions of the Northern Hemisphere, cannot be explained by dynamical variability alone, but are to a significant degree driven by stratospheric ozone. The surface signal is linked to reduced shortwave absorption by stratospheric ozone, forcing persistent negative temperature anomalies in the lower stratosphere and a delayed breakup of the polar vortex - analogous to ozone-surface coupling in the Southern Hemisphere.These results suggest that Arctic stratospheric ozone actively forces springtime Northern Hemispheric surface climate and thus provides a source of predictability on seasonal scales.


Sign in / Sign up

Export Citation Format

Share Document