Effect of tomato yellow leaf curl disease on yield, height and chlorophyll of open field grown tomato genotypes in Oman

Author(s):  
Alla Hilal Al Hashimi ◽  
Afnan Farih Al Aamir ◽  
Rhonda Janke ◽  
Peter Hanson ◽  
Abdullah. M. Al Sadi ◽  
...  
Euphytica ◽  
2012 ◽  
Vol 190 (2) ◽  
pp. 297-308 ◽  
Author(s):  
P. Kadirvel ◽  
R. de la Peña ◽  
R. Schafleitner ◽  
S. Huang ◽  
S. Geethanjali ◽  
...  

2020 ◽  
Vol 33 (1) ◽  
pp. 87-97
Author(s):  
Yuh Tzean ◽  
Ho-Hsiung Chang ◽  
Tsui-Chin Tu ◽  
Bo-Han Hou ◽  
Ho-Ming Chen ◽  
...  

Transgenic approaches employing RNA interference (RNAi) strategies have been successfully applied to generate desired traits in plants; however, variations between RNAi transgenic siblings and the ability to quickly apply RNAi resistance to diverse cultivars remain challenging. In this study, we assessed the promoter activity of a cauliflower mosaic virus 35S promoter (35S) and a phloem-specific promoter derived from rice tungro bacilliform virus (RTBV) and their efficacy to drive RNAi against the endogenous glutamate-1-semialdehyde aminotransferase gene (GSA) that acts as a RNAi marker, through chlorophyll synthesis inhibition, and against tomato yellow leaf curl Thailand virus (TYLCTHV), a begomovirus (family Geminiviridae) reported to be the prevalent cause of tomato yellow leaf curl disease (TYLCD) in Taiwan. Transgenic Nicotiana benthamiana expressing hairpin RNA of GSA driven by either the 35S or RTBV promoter revealed that RTBV::hpGSA induced stronger silencing along the vein and more uniformed silencing phenotype among its siblings than 35S::hpGSA. Analysis of transgenic N. benthamiana, 35S::hpTYLCTHV, and RTBV::hpTYLCTHV revealed that, although 35S::hpTYLCTHV generated a higher abundance of small RNA than RTBV::hpTYLCTHV, RTBV::hpTYLCTHV transgenic plants conferred better TYLCTHV resistance than 35S::hpTYLCTHV. Grafting of wild-type (WT) scions to TYLCTHV RNAi rootstocks allowed transferable TYLCTHV resistance to the scion. A TYLCTHV-inoculation assay showed that noninfected WT scions were only observed when grafted to RTBV::hpTYLCTHV rootstocks but not 35S::hpTYLCTHV nor WT rootstocks. Together, our findings demonstrate an approach that may be widely applied to efficiently confer TYLCD resistance.


Author(s):  
Qixi Yao ◽  
Zhengke Peng ◽  
Hong Tong ◽  
Fengbo Yang ◽  
Gaoshan Xing ◽  
...  

Abstract Tomato yellow leaf curl virus (TYLCV), a begomovirus (genus Begomovirus) is the causal agent of tomato yellow leaf curl disease (TYLCD), which causes severe damage to tomato (Solanum lycopersicum) crops throughout tropical and subtropical regions of the world. TYLCV is transmitted by the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in a circulative and persistent manner. Our previous studies showed that tomato flavonoids deter B. tabaci oviposition, but the effects of tomato flavonoids on the settling and feeding behavior of B. tabaci and on its transmission of TYLCV are unknown. Using two near-isogenic tomato lines that differ greatly in flavonoid levels, we found that high flavonoid production in tomato deterred the landing and settling of B. tabaci. Moreover, electrical penetration graph studies indicated that high flavonoid levels in tomato reduced B. tabaci probing and phloem-feeding efficiency. As a consequence, high flavonoid levels in tomato reduced the primary and secondary spread of TYLCV. The results indicate that tomato flavonoids provide antixenosis resistance against B. tabaci and that the breeding of such resistance in new varieties could enhance TYLCD management.


2007 ◽  
Vol 128 (1-2) ◽  
pp. 43-51 ◽  
Author(s):  
María Isabel Font ◽  
Luis Rubio ◽  
Pedro Vicente Martínez-Culebras ◽  
Concepción Jordá

Sign in / Sign up

Export Citation Format

Share Document