scholarly journals Environmental factors affecting the wintering raptor community in Armenia, Southern Caucasus

2021 ◽  
Author(s):  
Gianpasquale Chiatante ◽  
Michele Panuccio

AbstractThe species–habitat relationships can change during the year because of the seasonality of resources. Therefore, the investigation of habitat use by animals in each season plays a fundamental role in their conservation. The main aim of this research was to investigate the raptor community that spends the winter in Armenia, southern Caucasus, and to explore its relationship with environmental features, such as land use and topography. During January 2012, we collected data by carrying out 15 roadside counts along which we calculated three community parameters: the relative abundance, the species richness, and the species diversity. Then, we carried out a multiple linear regression with the Information-Theoretic Approach, to explain the relationship between the parameters and environmental variables. Besides, we computed a Canonical Correspondence Analysis (CCA) between the species and the environment around their observations. As a general pattern, the community was associated with permanent crops, maybe because of their heterogeneity, which in turn allows them to support higher densities of prey during the winter. The most abundant species was the Black Kite (Milvus migrans), followed by the Common Kestrel (Falco tinnunculus) and the Griffon Vulture (Gyps fulvus). To our knowledge, this is one of the first studies investigating the wintering raptor community in the Caucasus, with raptors generally studied in this area during the breeding season and migration.

Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 390
Author(s):  
Pouya Manshour ◽  
Georgios Balasis ◽  
Giuseppe Consolini ◽  
Constantinos Papadimitriou ◽  
Milan Paluš

An information-theoretic approach for detecting causality and information transfer is used to identify interactions of solar activity and interplanetary medium conditions with the Earth’s magnetosphere–ionosphere systems. A causal information transfer from the solar wind parameters to geomagnetic indices is detected. The vertical component of the interplanetary magnetic field (Bz) influences the auroral electrojet (AE) index with an information transfer delay of 10 min and the geomagnetic disturbances at mid-latitudes measured by the symmetric field in the H component (SYM-H) index with a delay of about 30 min. Using a properly conditioned causality measure, no causal link between AE and SYM-H, or between magnetospheric substorms and magnetic storms can be detected. The observed causal relations can be described as linear time-delayed information transfer.


Author(s):  
R. V. Prasad ◽  
R. Muralishankar ◽  
S. Vijay ◽  
H. N. Shankar ◽  
Przemyslaw Pawelczak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document