Spatio-spectral limiting on discrete tori: adjacency invariant spaces

Author(s):  
Jeffrey A. Hogan ◽  
Joseph D. Lakey
Keyword(s):  
2018 ◽  
Vol 481 (3) ◽  
pp. 235-237 ◽  
Author(s):  
S. Astashkin ◽  
◽  
E. Semenov ◽  
Keyword(s):  

1997 ◽  
Vol 62 (3) ◽  
pp. 689-698 ◽  
Author(s):  
Thierry Coquand

A standard result in topological dynamics is the existence of minimal subsystem. It is a direct consequence of Zorn's lemma: given a compact topological space X with a map f: X→X, the set of compact non empty subspaces K of X such that f(K) ⊆ K ordered by inclusion is inductive, and hence has minimal elements. It is natural to ask for a point-free (or formal) formulation of this statement. In a previous work [3], we gave such a formulation for a quite special instance of this statement, which is used in proving a purely combinatorial theorem (van de Waerden's theorem on arithmetical progression).In this paper, we extend our analysis to the case where X is a boolean space, that is compact totally disconnected. In such a case, we give a point-free formulation of the existence of a minimal subspace for any continuous map f: X→X. We show that such minimal subspaces can be described as points of a suitable formal topology, and the “existence” of such points become the problem of the consistency of the theory describing a generic point of this space. We show the consistency of this theory by building effectively and algebraically a topological model. As an application, we get a new, purely algebraic proof, of the minimal property of [3]. We show then in detail how this property can be used to give a proof of (a special case of) van der Waerden's theorem on arithmetical progression, that is “similar in structure” to the topological proof [6, 8], but which uses a simple algebraic remark (Proposition 1) instead of Zorn's lemma. A last section tries to place this work in a wider context, as a reformulation of Hilbert's method of introduction/elimination of ideal elements.


Sign in / Sign up

Export Citation Format

Share Document