Grain reorientations in rolled aluminium sheet: comparison with predictions of continuous constraints model

1987 ◽  
Vol 35 (6) ◽  
pp. 1355-1366 ◽  
Author(s):  
R. Fortunier ◽  
J.H. Driver
1965 ◽  
Vol 15 (5) ◽  
pp. 287-292
Author(s):  
Shigeo ZAIMA ◽  
Akiyasu YUKI ◽  
Osamu HORIUCHI
Keyword(s):  

2014 ◽  
Vol 891-892 ◽  
pp. 980-985 ◽  
Author(s):  
Niall Smyth ◽  
Philip E. Irving

This paper reports the effectiveness of residual stress fields induced by laser shock peening (LSP) to recover pristine fatigue life. Scratches 50 and 150 μm deep with 5 μm root radii were introduced into samples of 2024-T351 aluminium sheet 2 mm thick using a diamond tipped tool. LSP was applied along the scratch in a band 5 mm wide. Residual stress fields induced were measured using incremental hole drilling. Compressive residual stress at the surface was-78 MPa increasing to-204 MPa at a depth of 220 μm. Fatigue tests were performed on peened, unpeened, pristine and scribed samples. Scratches reduced fatigue lives by factors up to 22 and LSP restored 74% of pristine life. Unpeened samples fractured at the scratches however peened samples did not fracture at the scratches but instead on the untreated rear face of the samples. Crack initiation still occurred at the root of the scribes on or close to the first load cycle in both peened and unpeened samples. In peened samples the crack at the root of the scribe did not progress to failure, suggesting that residual stress did not affect initiation behaviour but instead FCGR. A residual stress model is presented to predict crack behaviour in peened samples.


Author(s):  
Chen Wu ◽  
Yibo Wang ◽  
Jing Ji ◽  
Pan Liu ◽  
Liping Li ◽  
...  

Reservoirs play important roles in hydropower generation, flood control, water supply, and navigation. However, the regulation of reservoirs is challenged due to their adverse influences on river ecosystems. This study uses ecoflow as an ecological indicator for reservoir operation to indicate the extent of natural flow alteration. Three reservoir optimization models are established to derive ecological operating rule curves. Model 1 only considers the maximization of average annual hydropower generation and the assurance rate of hydropower generation. Model 2 incorporates ecological objectives and constraints. Model 3 not only considers the hydropower objectives but also simulates the runoff and calculates the ecological indicator values of multiple downstream stations. The three models are optimized by a simulation-optimization framework. The reservoir ecological operating rule curves are derived for the case study of China's Three Gorges Reservoir. The results represent feasible schemes for reservoir operation by considering both hydropower and ecological demands. The average annual power generation and assurance rate of a preferred optimized scheme for Model 3 are increased by 1.06% and 2.50%, respectively. Furthermore, ecological benefits of the three hydrologic stations are also improved. In summary, the ecological indicator ecoflow and optimization models could be helpful for reservoir ecological operations.


Sign in / Sign up

Export Citation Format

Share Document