ecological indicator
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 88)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Leticia Bonilla-Valencia ◽  
Silvia Castillo-Argüero ◽  
José Alejandro Zavala-Hurtado ◽  
Francisco Javier Espinosa-García ◽  
Roberto Lindig-Cisneros ◽  
...  

Functional diversity is related to the maintenance of processes and functions in ecosystems. However, there is a lack of a conceptual framework that highlights the application of functional diversity as an ecological indicator. Therefore, we present a new initiative for motivating the development of ecological indicators based on functional diversity. We are interested in showing the challenges and solutions associated with these indicators. We integrated species assemblage theories and literature reviews. We considered plant traits related to ecosystem processes and functions (specific leaf area, leaf dry matter content, wood density, phenology, and seed mass) to show the application of a selection of functional diversity metrics that can be used as ecological indicators (i.e., Community Weighted-Mean, Functional Divergence, Functional Richness and Functional Evenness). We caution that functional diversity as an ecological indicator can be misinterpreted if species composition is unknown. Functional diversity values can be overrepresented by weed species (species established in disturbed sites) and do not maintain original processes and functions in ecosystems. Therefore, we searched for evidence to demonstrate that weed species are ecological indicators of functional diversity changes. We found support for two hypotheses that explain the effect of weed species on ecosystem function: functional homogenization and functional transformation. Likewise, we showed the application of some tools that can help study the anthropogenic effect on functional indicators. This review shows that the paradigm of addressing the effects of disturbances on ecosystem processes by using functional diversity as an ecological indicator can improve environmental evaluation, particularly in areas affected by human activities.


Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Linyi Tan ◽  
Guancheng Guo ◽  
Shicheng Li

Protected areas play significant roles in protecting biodiversity by mitigating human activities. As an indicator for human activities, the human footprint (HF) can be used to assess the effectiveness of protected areas. We developed a HF dataset for the Sanjiangyuan region in China after localizing the global HF model. Then we used it to assess the effectiveness of Sanjiangyuan nature reserve (SNR) in mitigating human pressures. Our results suggest that the HF value for the Sanjiangyuan region was generally low from 1995 to 2015, with a fluctuating increasing trend. The SNR is partially effective in mitigating human pressures. For 2005–2010, the HF values decreased both within and outside the reserve with more decreases for the outside. For the three functional zones of the SNR, our results show that the HF values decreased during 2005–2010 for all of them, with the largest decrease in the experimental area, and increased during 2010–2015, with the lowest increase in the core areas. The results we obtained are consistent with ecological indicator-based assessments. It is a challenge for the government to balance conservation and development in establishing Sanjiangyuan National Park.


Author(s):  
Chen Wu ◽  
Yibo Wang ◽  
Jing Ji ◽  
Pan Liu ◽  
Liping Li ◽  
...  

Reservoirs play important roles in hydropower generation, flood control, water supply, and navigation. However, the regulation of reservoirs is challenged due to their adverse influences on river ecosystems. This study uses ecoflow as an ecological indicator for reservoir operation to indicate the extent of natural flow alteration. Three reservoir optimization models are established to derive ecological operating rule curves. Model 1 only considers the maximization of average annual hydropower generation and the assurance rate of hydropower generation. Model 2 incorporates ecological objectives and constraints. Model 3 not only considers the hydropower objectives but also simulates the runoff and calculates the ecological indicator values of multiple downstream stations. The three models are optimized by a simulation-optimization framework. The reservoir ecological operating rule curves are derived for the case study of China's Three Gorges Reservoir. The results represent feasible schemes for reservoir operation by considering both hydropower and ecological demands. The average annual power generation and assurance rate of a preferred optimized scheme for Model 3 are increased by 1.06% and 2.50%, respectively. Furthermore, ecological benefits of the three hydrologic stations are also improved. In summary, the ecological indicator ecoflow and optimization models could be helpful for reservoir ecological operations.


2021 ◽  
Vol 2 ◽  
pp. 257-274
Author(s):  
Hallie Seiler ◽  
Daniel Küry ◽  
Regula Billeter ◽  
Jürgen Dengler

Aims: The spring habitats of Central Europe are insular biotopes of high ecological value. Although subject to severe exploitation pressures, they do not yet have a comprehensive protection status in Switzerland. Contributing to this challenge is the controversy involved with their syntaxonomic classification. In the context of the development of a regional conservation strategy and the establishment of a national inventory of Swiss springs, we carried out a regional survey of spring vegetation and aimed to translate this into a classification system. Study area: Montane and subalpine zones of Parc Ela (Grisons, Switzerland). Methods: We selected 20 springs to cover different regions, elevations and bedrock types within the park. In each of them we recorded complete vascular plant and bryophyte composition as well as a range of environmental variables in three 1-m² plots that were placed to reflect the heterogeneity within the spring. After running an unsupervised classification with modified TWINSPAN, the distinguished vegetation units were characterized in terms of diagnostic species, species richness and environmental variables and placed within the syntaxonomic system. Results: Species richness was high (total species 264, mean 21.7 species in 1 m2). The two most important environmental gradients of the ordination were elevation/water conductivity and insolation/water pH/soil reaction EIV. We distinguished seven communities within two main groups. Conclusions: All unshaded springs, including those over siliceous bedrock, could be assigned to a broadly defined Cratoneurion. The petrifying springs were not strongly distinguishable floristically from other base-rich springs. The forest springs, although often not clearly differentiated from their unshaded counterparts, could be provisionally divided into the alliances Caricion remotae and Lycopodo europaei-Cratoneurion commutati. As there is a certain threat to these habitats in the park due to anthropogenic influence, protection measures are recommended, most importantly the appropriate management of alpine pastures. Taxonomic reference: Juillerat et al. (2017) for vascular plants, Meier et al. (2013) for bryophytes. Abbreviations: ANOVA = analysis of variance; DCA = detrended correspondence analysis; EIV = ecological indicator value; FOEN = Federal Office of the Environment (Switzerland); NCHO = Ordinance on the Protection of Nature and Cultural Heritage; SD = standard deviation; TWINSPAN = Two Way Indicator Species Analysis; WPA = Federal Act on the Protection of Waters.


Polar Biology ◽  
2021 ◽  
Author(s):  
Katarzyna Wojczulanis-Jakubas ◽  
Dariusz Jakubas ◽  
Lech Stempniewicz

AbstractThe Little Auk Alle alle is a small planktivorous auk breeding colonially in the High Arctic. Owing to its large population size and bi-environmental lifestyle, resulting in the large-scale transport of matter from sea to land, the Little Auk is one of the most important components of the marine and terrestrial ecosystems in the Arctic. As a result of globalization, which facilitates access to remote areas of the Earth, a growing number of studies is being dedicated to this endemic Arctic seabird. Research has focussed primarily on the importance of the Little Auk as an ecological indicator reacting to the climatic and oceanological changes that are particularly evident in the Arctic as a result of Arctic amplification (warming is more rapid in the Arctic than in any other region on Earth). Importantly, the species is also used as a model to investigate matter and energy flow through the ecosystem, mate choice, parental care and biological rhythms. Here, we review the natural history of the Little Auk, highlighting studies with the potential to provide answers to universal questions regarding the response of seabirds to climate variability and avian reproductive behaviour, e.g. threshold of foraging flexibility in response to environmental variability, carry-over effects between the breeding and non-breeding periods, the reasons for the transition from bi- to uni-parental care, parental coordination mechanisms.


2021 ◽  
Vol 11 (24) ◽  
pp. 11704
Author(s):  
Rafi Ullah ◽  
Nasrullah Khan ◽  
Kishwar Ali ◽  
Muhammad Ezaz Hasan Khan ◽  
David Aaron Jones

The ecological impacts of invasive alien plant species (IAPS) are well-documented, but a dearth of studies exist concerning its economic, livelihood, biotechnological, and health risk assessment perspectives. IAPS management is currently expanding to ecological indicator and biotechnological aspects. Hence, this study aimed to investigate the phytoremediation potential, biomedical, and bio-safety applications of X. strumarium growing in different abandoned habitats in Khyber Pakhtunkhwa, Pakistan. In this study, 45 plants and soil samples were gathered from 15 abandoned sites and analyzed for Pb, Cd, Cu, and Zn concentrations; bioaccumulation (BA); and translocation factor (TF). The assayed Pb and Cd concentration was higher and above threshold in both soil–plant samples. BAF was found higher in roots than intact plants despite having a significant accumulation of Cd, Pb, and Zn, which shows high metals tolerance of this IAPS. PCA-ordination explained a high cumulative variance (98.9%) and separated roads and densely populated sites with comparatively high metals concentration, indicating the pseudometallophyte nature of X. strumarium. Soil, sand, and plant biomass were shown to be the major determinants affecting the heavy metals concentration and its phytoremediation significantly, which may be due to the soil’s metalliferous nature in the study area. This IAPS exhibited strong translocation and hyperaccumulation capacity in different functional traits with comparatively high Pb, Cd, and Zn (≥1 TF) mobility and, hence, can effectively be used for Pb phytoextraction and phytostabilization of Cd, Cu, and Zn, respectively. Likewise, several other non-spontaneous IAPS growing on such abandoned habitats might be promising for developing a reasonable strategic framework for heavy metals mitigation and health risk implications in this region.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiaqiang Liao ◽  
Zhaolei Li ◽  
Jinsong Wang ◽  
Dashuan Tian ◽  
Di Tian ◽  
...  

Abstract Background Plant nitrogen use efficiency (NUE) is an important ecological indicator that reflects the capacity of a plant to transform nitrogen into production, which is essential for further elucidating plant growth and terrestrial ecosystem productivity. Although there are a growing number of studies that address NUE changes at local scales, the variations of NUE over large spatial scales remain unclear. In this study, we analyzed the geographic patterns of NUE and explored its phylogenic and environmental drivers across 1452 species at 1102 sites in China. Results NUE tended to decrease with latitude (r = − 0.56), whereas it increased with longitude (r = 0.54), and varied widely in different ecosystems and plant life forms. Furthermore, NUE was negatively correlated with plant foliar phosphorus concentration (r = − 0.53), soil pH (r = − 0.10), soil total phosphorus (r = − 0.13) and available phosphorus (r = − 0.05), but positively with the mean annual temperature (r = 0.32), annual precipitation (r = 0.27), and aridity index (r = 0.26). NUE was significantly altered with phylogeny and evolved toward a lower value (r = − 0.28), which may have been due to increasing nitrogen deposition and fixation in biogeochemical evolution. Overall, the combination of foliar phosphorus concentration, phylogeny, climate, and soil properties accounted for 52.7% of the total variations of NUE. In particular, foliar phosphorus concentration was the most important factor, whereas plant evolutionary history was second in contributing to NUE variations. Conclusions Our study emphasizes the pivotal role of plant stoichiometry and phylogeny in nitrogen cycling and suggests incorporating them into earth system models to better understanding plant growth and nitrogen cycling in the context of environmental changes.


2021 ◽  
Vol 42 ◽  
pp. e74570
Author(s):  
Borja Jiménez-Alfaro ◽  
Luis Carlón ◽  
Eduardo Fernández-Pascual ◽  
Carmen Acedo ◽  
Estrella Alfaro-Saiz ◽  
...  

We present the first standardized list of the vascular flora of the Cantabrian Mountains, a transitional zone between the Eurosiberian and Mediterranean biogeographic regions in northwestern Spain. The study area comprises 15000 km2 divided in UTM grid cells of 10 km x 10 km, for which we revised occurrence data reported in the Spanish Plant Information System (Anthos) and the online database of Iberian and Macaronesian Vegetation (SIVIM). We used a semi-automatic procedure to standardize taxonomic concepts into a single list of names, which was further updated by expert-based revision with the support of national and regional literature. In the current version, the checklist of the Cantabrian Mountains contains 2338 native species and subspecies, from which 56 are endemic to the study area. The nomenclature of the checklist follows Euro+Med in 97% of taxa, including annotations when other criteria has been used and for taxa with uncertain status. We also provide a list of 492 non-native taxa that were erroneously reported in the study area, a list of local apomictic taxa, a phylogenetic tree linked to The Plant List, a standardized calculation of Ellenberg Ecological Indicator Values for 80% of the flora, and information about life forms, IUCN threat categories and legal protection status. Our review demonstrates how the Cantabrian mountains represent a key floristic region in southern Europe and a relevant phytogeographical hub in south-western Europe. The checklist and all related information are freely accessible in a digital repository for further uses in basic and applied research


2021 ◽  
Vol 13 (21) ◽  
pp. 11744
Author(s):  
Chi Zhang ◽  
Shaohong Wu ◽  
Yu Deng ◽  
Jieming Chou

Three Earth system models (ESMs) from the Coupled Model Intercomparison Project phase 6 (CMIP6) were chosen to project ecosystem changes under 1.5 and 2 °C global warming targets in the Shared Socioeconomic Pathway 4.5 W m−2 (SSP245) scenario. Annual terrestrial gross primary productivity (GPP) was taken as the representative ecological indicator of the ecosystem. Under 1.5 °C global warming, GPP in four climate zones—i.e., temperate continental; temperate monsoonal; subtropical–tropical monsoonal; high-cold Tibetan Plateau—showed a marked increase, the smallest magnitude of which was around 12.3%. The increase was greater under 2 °C of global warming, which suggests that from the perspective of ecosystem productivity, global warming poses no ecological risk in China. Specifically, in comparison with historical GPP (1986–2005), under 1.5 °C global warming GPP was projected to increase by 16.1–23.8% in the temperate continental zone, 12.3–16.1% in the temperate monsoonal zone, 12.5–14.7% in the subtropical–tropical monsoonal zone, and 20.0–37.0% on the Tibetan Plateau. Under 2 °C global warming, the projected GPP increase was 23.0–34.3% in the temperate continental zone, 21.2–24.4% in the temperate monsoonal zone, 16.1–28.4% in the subtropical–tropical monsoonal zone, and 28.4–63.0% on the Tibetan Plateau. The GPP increase contributed by climate change was further quantified and attributed. The ESM prediction from the Max Planck Institute suggested that the climate contribution could range from −12.8% in the temperate continental zone up to 61.1% on the Tibetan Plateau; however, the ESMs differed markedly regarding their climate contribution to GPP change. Although precipitation has a higher sensitivity coefficient, temperature generally plays a more important role in GPP change, primarily because of the larger relative change in temperature in comparison with that of precipitation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yuan Zhang ◽  
Chung-Lien Pan ◽  
Han-Teng Liao

Carbon neutrality, or “net zero”, has become the impact assessment project of human impact on Earth, increasingly structured to examine the implications, for the environment and people, of proposed actions and consequences of inaction. International and local collaboration efforts have been made with the aim of achieving carbon neutrality or “net-zero” emissions; thus, policies and technological innovations have been developed. Such impact-oriented risk assessment and control efforts amount to carbon-neutral pathways. Although such pathways may diverge in terms of energy, resources, and cost, it is critical to summarize essential and promising preparatory work on related policies and technologies to inform both policy-makers and social scientists to take actions. Through a scientometric analysis and systematic review of the latest social science literature, the study identified the size, scope and exemplar work for each social science discipline on carbon neutrality, based on 907 articles collected in early 2021 from the Web of Science database. This study reveals a set of disciplines focusing on certain common and distinct aspects of carbon neutrality. By outlining the possibilities and application areas for future research and policy development for socio-technical transition towards a net-zero or post-carbon future, this study has contributed to the understanding of the global efforts to achieve a clearer and viable carbon-neutral pathway. In conclusion, as many aspects of the planet and humans have become datafied, digitized, and networked, carbon neutrality, as the ecological indicator that guide human production and consumption patterns, must take on a central role in guiding our conscious green digital transformation of many political, economic, social and psychological aspects of our societies according to the existing and emerging social science knowledge.


Sign in / Sign up

Export Citation Format

Share Document