Determination of zero reference level for left atrial pressure by echocardiography

1975 ◽  
Vol 89 (2) ◽  
pp. 159-162 ◽  
Author(s):  
P.A.N. Chandraratna
1964 ◽  
Vol 207 (2) ◽  
pp. 357-360 ◽  
Author(s):  
George G. Armstrong ◽  
John C. Hancock

Simultaneous recordings of left and right atrial pressures made in dogs being rotated into all positions in space allowed the location of rotational axes where right or left atrial pressure became independent of hydrostatic pressure. Utilization of these axes as zero reference levels made possible the measurement of right or left atrial pressure without the influence of hydrostatic factors. The right zero reference point lay 62.8% of the distance from the manubrium to the xiphoid, 61.2% of the posterior to anterior thoracic diameter, and 47.7% of the greatest transverse thoracic diameter as measured from the right lateral border. The left atrial zero reference point lay 62.1% of the manubrium to xiphoid distance, 57.2% of the posterior to anterior diameter of thorax, and 53.0% of the greatest transverse thoracic diameter as measured from the right lateral border. When referred to the anatomy of the dog, these points lay in the immediate vicinity of the right and left atrioventricular valves, respectively.


2021 ◽  
Vol 77 (18) ◽  
pp. 1200
Author(s):  
Prince Sethi ◽  
Nikhil Parimi ◽  
Prakash Acharya ◽  
Amandeep Goyal ◽  
Emmanuel Daon ◽  
...  

2011 ◽  
Vol 25 (2) ◽  
pp. 244-250 ◽  
Author(s):  
S. Suzuki ◽  
T. Ishikawa ◽  
L. Hamabe ◽  
D. Aytemiz ◽  
H. Huai-Che ◽  
...  

Cardiology ◽  
1996 ◽  
Vol 87 (3) ◽  
pp. 224-229 ◽  
Author(s):  
Jer-Min Lin ◽  
Yi-Heng Li ◽  
Kwan-Lih Hsu ◽  
Juey-Jen Hwang ◽  
Yung-Zu Tseng

2015 ◽  
Vol 8 (7) ◽  
pp. e117-e119 ◽  
Author(s):  
Mackram F. Eleid ◽  
Saurabh Sanon ◽  
Guy S. Reeder ◽  
Rakesh M. Suri ◽  
Charanjit S. Rihal

2000 ◽  
Vol 279 (2) ◽  
pp. H594-H600 ◽  
Author(s):  
Michael S. Firstenberg ◽  
Neil L. Greenberg ◽  
Nicholas G. Smedira ◽  
David L. Prior ◽  
Gregory M. Scalia ◽  
...  

The simplified Bernoulli equation relates fluid convective energy derived from flow velocities to a pressure gradient and is commonly used in clinical echocardiography to determine pressure differences across stenotic orifices. Its application to pulmonary venous flow has not been described in humans. Twelve patients undergoing cardiac surgery had simultaneous high-fidelity pulmonary venous and left atrial pressure measurements and pulmonary venous pulsed Doppler echocardiography performed. Convective gradients for the systolic (S), diastolic (D), and atrial reversal (AR) phases of pulmonary venous flow were determined using the simplified Bernoulli equation and correlated with measured actual pressure differences. A linear relationship was observed between the convective ( y) and actual ( x) pressure differences for the S ( y = 0.23 x + 0.0074, r = 0.82) and D ( y = 0.22 x + 0.092, r = 0.81) waves, but not for the AR wave ( y = 0.030 x + 0.13, r = 0.10). Numerical modeling resulted in similar slopes for the S ( y = 0.200 x − 0.127, r = 0.97), D ( y = 0.247 x − 0.354, r= 0.99), and AR ( y = 0.087 x − 0.083, r = 0.96) waves. Consistent with numerical modeling, the convective term strongly correlates with but significantly underestimates actual gradient because of large inertial forces.


2015 ◽  
Vol 66 (16) ◽  
pp. C177
Author(s):  
Xiaobo Liao ◽  
Yanzong Yang ◽  
Lianjun Gao ◽  
Yunlong Xia ◽  
Dong Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document