Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique

1992 ◽  
Vol 295 (1) ◽  
pp. 205-213 ◽  
Author(s):  
Phillip M. Hanna ◽  
Ronald P. Mason
1959 ◽  
Vol 12 (2) ◽  
pp. 147 ◽  
Author(s):  
NK King ◽  
ME Winfield

A thermodynamical argument is used to support the suggestion made elsewhere that the more common radical chain mechanism for catalysed decomposition of H2O2 need not predominate if the catalyst can readily undergo a reversible 2-electron oxidation. How complete the exclusion of free radical formation may be depends upon the redox characteristics of the catalyst and on whether its oxidation by two single-electron steps is readily reversible along the same path.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 699
Author(s):  
Chigozie E. Ofoedu ◽  
Lijun You ◽  
Chijioke M. Osuji ◽  
Jude O. Iwouno ◽  
Ngozi O. Kabuo ◽  
...  

Numerous reactive oxygen species (ROS) entities exist, and hydrogen peroxide (H2O2) is very key among them as it is well known to possess a stable but poor reactivity capable of generating free radicals. Considered among reactive atoms, molecules, and compounds with electron-rich sites, free radicals emerging from metabolic reactions during cellular respirations can induce oxidative stress and cause cellular structure damage, resulting in diverse life-threatening diseases when produced in excess. Therefore, an antioxidant is needed to curb the overproduction of free radicals especially in biological systems (in vivo and in vitro). Despite the inherent properties limiting its bioactivities, polysaccharides from natural sources increasingly gain research attention given their position as a functional ingredient. Improving the functionality and bioactivity of polysaccharides have been established through degradation of their molecular integrity. In this critical synopsis; we articulate the effects of H2O2 on the degradation of polysaccharides from natural sources. Specifically, the synopsis focused on free radical formation/production, polysaccharide degradation processes with H2O2, the effects of polysaccharide degradation on the structural characteristics; physicochemical properties; and bioactivities; in addition to the antioxidant capability. The degradation mechanisms involving polysaccharide’s antioxidative property; with some examples and their respective sources are briefly summarised.


Sign in / Sign up

Export Citation Format

Share Document