Differences in pH fall, phosphorus content and dissolution of enamel in layers of the oral bacterium Streptococcus mutans deposited in vitro on bovine enamel granules with and without fluoride varnish

1982 ◽  
Vol 27 (12) ◽  
pp. 1003-1006 ◽  
Author(s):  
H. Luoma ◽  
A-R. Luoma
1982 ◽  
Vol 27 (12) ◽  
pp. 1033-1037 ◽  
Author(s):  
R.J. Crout ◽  
J.R. Gilbertson ◽  
J.D. Gilbertson ◽  
D. Platt ◽  
H.H. Langkamp ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Susann Grychtol ◽  
Sabine Basche ◽  
Matthias Hannig ◽  
Christian Hannig

The presentin situstudy investigated the influence of a preparation containing CPP/ACP (caseinphosphopeptide-amorphous calcium phosphate) (GC Tooth mousse) on initial bacterial colonization of enamel and dentin. Therefore, pellicle formation was performedin situon bovine enamel and dentin specimens fixed to individual upper jaw splints worn by 8 subjects. After 1 min of pellicle formation GC Tooth mousse was used according to manufacturer’s recommendations. Rinses with chlorhexidine served as positive controls. Specimens carried without any rinse served as negative controls. After 8 h overnight exposure of the splints, bacterial colonization was quantified by fluorescence microscopy (DAPI and BacLight live/dead staining). Additionally, the colony forming units (CFU) were determined after desorption. Furthermore, the effects onStreptococcus mutansbacteria were testedin vitro(BacLight). There was no significant impact of CPP/ACP on initial bacterial colonization proved with DAPI and BacLight. Determination of CFU showed statistical significance for CPP/ACP to reduce bacterial adherence on enamel. Thein vitroinvestigation indicated no antimicrobial effects for CPP/ACP onStreptococcus mutanssuspension. Under the chosen conditions, CPP/ACP (GC Tooth mousse) had no significant impact on initial biofilm formation on dental hard tissues. The tested preparation cannot be recommended for biofilm management.


2015 ◽  
Vol 49 (6) ◽  
pp. 583-590 ◽  
Author(s):  
Constanza E. Fernández ◽  
Rodrigo A. Giacaman ◽  
Livia M. Tenuta ◽  
Jaime A. Cury

Despite promising results using probiotics, evidence of the preventive effect on enamel demineralization is insufficient and the cariogenic potential of probiotics is still controversial. Probiotics could affect biofilm formation and interfere with adherence, growth or coaggregation with Streptococcus mutans in biofilms. However, most of the studies have been conducted using planktonic bacteria. Hence, the aim of the study was to assess the effect of probiotic bacteria on the cariogenicity of S. mutans using an in vitro biofilm caries model on enamel. Single-species biofilms (S. mutans UA159, SM or Lactobacillus rhamnosus LB21, LB) or dual-species biofilms simultaneously inoculated (SM + LB) or LB inoculated 8 h after SM (SM → LB) were grown for 96 h. Biofilms were formed on bovine enamel saliva-coated slabs of known surface hardness (SH) and immersed in culture media. Biofilms were exposed 8 times per day to 10% sucrose. Medium pH was monitored twice daily as a biofilm acidogenicity indicator. After 96 h, biofilms were collected to determine biomass and bacteria viability. Slab demineralization was calculated as percentage of SH loss (%SHL). Additionally, the model was tested with different concentrations of the initial inoculum (103, 106, 108 cells/ml) and different adhesion times (2 or 8 h). The dual-species biofilm revealed no LB effects on SM cariogenicity, without changes in acidogenicity or %SHL among groups (p > 0.05, n = 12). Lack of activity of LB on SM cariogenicity persisted even when 105 times higher concentration of the probiotic was tested. Coaggregation was not observed. In conclusion, findings suggest that LB does not reduce cariogenicity of SM in a validated experimental caries model.


2017 ◽  
Vol 51 (2) ◽  
pp. 87-95 ◽  
Author(s):  
Falk Schwendicke ◽  
Franziska Korte ◽  
Christof E. Dörfer ◽  
Susanne Kneist ◽  
Karim Fawzy El-Sayed ◽  
...  

To exert anticaries effects, probiotics are described to inhibit growth and biofilm formation of cariogenic bacteria such as Streptococcus mutans (SM). We screened 8 probiotics and assessed how SM growth or biofilm formation inhibition affects cariogenicity of probiotic-SM mixed-species biofilms in vitro. Growth inhibition was assessed by cocultivating probiotics and 2 SM strains (ATCC 20532/25175) on agar. Probiotics were either precultured before SM cultivation (exclusion), or SM precultured prior to probiotic cultivation (displacement). Inhibition of SM culture growth was assessed visually. Inhibition of SM biofilm formation on bovine enamel was assessed using a continuous-flow short-term biofilm model, again in exclusion or displacement mode. The cariogenicity of mixed-species biofilms of SM with the most promising growth and biofilm formation inhibiting probiotic strains was assessed using an artificial mouth model, and enamel mineral loss (ΔZ) was measured microradiographically. We found limited differences in SM growth inhibition in exclusion versus displacement mode, and in inhibition of SM 20532 versus 25175. Results were therefore pooled. Lactobacillus acidophilus LA-5 inhibited significantly more SM culture growth than most other probiotics. L. casei LC-11 inhibited SM biofilm formation similarly to other alternatives but showed the highest retention of probiotics in the biofilms (p < 0.05). Mineral loss from SM monospecies biofilms (ΔZ = 9,772, 25th/75th percentiles: 6,277/13,558 vol% × µm) was significantly lower than from mixed-species SM × LA-5 biofilms (ΔZ = 24,578, 25th/75th percentiles: 19,081/28,768 vol% × µm; p < 0.01) but significantly higher than from SM × LC-11 biofilms (ΔZ = 4,835, 25th/75th percentiles: 263/7,865 vol% × µm; p < 0.05). Probiotics inhibiting SM culture growth do not necessarily reduce the cariogenicity of SM-probiotic biofilms. Nevertheless, SM biofilm formation inhibition may be relevant in the reduction of cariogenicity.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Marcia Regina Cabral Oliveira ◽  
Pedro Henrique Cabral Oliveira ◽  
Luiz Henrique Cabral Oliveira ◽  
Ravana Angelini Sfalcin ◽  
Renato Araujo Prates ◽  
...  

Objective. To evaluate the influence of ultrapulsed CO2 laser in combination with commercial fluoride products in order to verify the increase of microhardness of artificial enamel caries lesions. Materials and Methods. Bovine enamel specimens were prepared, and artificial enamel caries lesions were created. Teeth were randomly divided into 5 groups (n=10): treated with laser (L), laser + neutral fluoride gel 2% (LNF), laser + acidulated phosphate fluoride gel 1.23% (LAFG), laser + acidulated fluoride mousse 1.23% (LAFM), and laser + fluoride varnish 5% (LFV). Microhardness was evaluated at baseline, after caries induction, after CO2 laser irradiation + fluoride treatment in the 1st week, and after fluoride treatment at 3rd and 5th week. Results. There was a decrease in microhardness in all groups after artificial enamel caries lesion formation; no increase in microhardness was found in the first and third weeks in all groups (p > 0.05). In the fifth week, an increase in microhardness occurred in all groups (p < 0.05). Conclusion. Although CO2 laser irradiation in combination with different commercial fluoride products was capable of increasing microhardness on enamel caries lesions in bovine tooth enamel it is necessary to confirm these results by testing the isolated effect of fluoride on enamel surface microhardness. Also, although microhardness was higher in the fluoride varnish group than in the other groups in the fifth week it is not possible to discard the best effect of fluoride varnish treatment on absence of artifacts that may occur with the other fluoride treatments. Clinical Relevance. In order to prove that CO2 laser may contribute to an increase in microhardness when applied to enamel lesions in combination with different commercial fluoride products it is necessary to conduct additional studies. Also, higher microhardness of fluoride varnish group should be carefully considered.


Sign in / Sign up

Export Citation Format

Share Document