phosphorus content
Recently Published Documents


TOTAL DOCUMENTS

1350
(FIVE YEARS 260)

H-INDEX

49
(FIVE YEARS 7)

2022 ◽  
pp. 1-9
Author(s):  
Mihály Kocsis ◽  
Gábor Szatmári ◽  
Piroska Kassai ◽  
Gábor Kovács ◽  
János Tóth ◽  
...  

Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 69
Author(s):  
Hongzhou Shi ◽  
Yangmei Wang ◽  
Hong Chen ◽  
Fuxiang Deng ◽  
Yongan Liu ◽  
...  

Phytoremediation with hyperaccumulator plants has been recognized as a potential way for the clearing of cadmium (Cd)-contaminated soil. In this study, hyperaccumulator Tagetes patula was treated with seven concentrations of Cd, ranging from 0 to 300 mg kg−1. The Cd enrichment and nutrient contents in different organs during different growth phases were investigated. Under Cd concentrations ≤75 mg kg-1, the morphological growth of T. patula did not change significantly regardless of growth stage. However, when Cd concentration exceeded 150 mg kg−1, the morphological growth was remarkedly inhibited. The root/shoot ratio remained unchanged except for at 300 mg kg−1. In addition, Cd negatively influenced the flowering process at the concentration of 300 mg kg−1. Cd content increased significantly in Cd-treated plants. Nitrogen absorption was increased under Cd treatments, and phosphorus content was also increased under concentration ≤150 mg·kg−1. However, the potassium content in the flower was decreased under 300 mg kg−1. Furthermore, the contents of H2O2, O2− and malondialdehyde were increased during the seedling phase, especially when Cd concentration was ≥150 mg kg−1. In summary, T. patula showed a strong ability to tolerate Cd, and such ability might be explained by nutrient absorption and reactive oxygen clearness.


Author(s):  
Abhinav Kumar Yadav ◽  
S.P. Singh ◽  
D.K. Yadav ◽  
Govind Kumar Yadav ◽  
Kuldeep Singh ◽  
...  

Background: Nitrogen and phosphorus are amongst fundamental macronutrients, which are crucial for the growth and development of plant. Soils of dry land of central Rajasthan are deficit in nitrogen and phosphorus content which leads to lower productivity of kasuri methi. Therefore, adequate supply of nitrogen (foliar spray) and phosphorus could enhance productivity of kasuri methi. Methods: The experiment consisted of sixteen treatment combinations including four levels of phosphorus (control, 20, 40 and 60 kg/ha) and four levels of foliar application of nitrogen (control, 1.0, 1.5 and 2.0%). They were under taken in FRBD with three replications. Result: Growth parameters and yield of fresh and dried leaves of the crop increased almost linearly with increasing levels of phosphorus and foliar application of nitrogen. The result indicated that application of phosphorus 60 kg/ha and foliar nitrogen @ 2.0% to the kasuri methi crop significantly increased the plant height (cm) and leaf area per plant (cm2) at each harvest, number of nodules per plant (58.17 and 53.33, respectively) and chlorophyll content (2.32 and 2.39 mg/100 g, respectively), fresh leaves yield (139.1 and 141.66 q/ha, respectively), dry leaves yield (20.01 and 22.38 q/ha, respectively), protein content in leaves (5.28 and 5.75%, respectively) and ascorbic acid in leaves (218.15 and 222.42 mg/100 g, respectively).


2022 ◽  
Vol 9 ◽  
Author(s):  
Mengyu Wang ◽  
Nan Lu ◽  
Nannan An ◽  
Bojie Fu

The relationship between biodiversity and ecosystem multifunctionality (EMF) is crucial for understanding the processes of ecological restoration in semi-arid regions. However, partitioning the relative influence of various biodiversity attributes, namely taxonomic, functional, and phylogenetic diversity, on EMF during secondary succession is still unclear. This study aimed to bridge the gap by employing field measurements and the chronosequence approach at 21 plots with different stand ages and precipitation conditions on the Loess Plateau of China. For diversity indices, we calculated the Shannon–Wiener diversity index, Simpson’s dominance index, Pielou evenness index, community weighted mean (CWM), functional variance (FDvar), and Faith’s phylogenetic diversity (PD) based on the empirically measured composition and traits of plant species. The EMF was expressed as the averaged value of eight function variables (including aboveground biomass, root biomass, soil total carbon, total nitrogen, and total phosphorus content, soil organic carbon, available nitrogen and available phosphorus content). The results showed that species evenness and CWM of leaf dry matter content (LDMC) significantly increased yet the CWM of specific leaf area (SLA) decreased with stand age, indicating the resource-use strategy of the plants became more conservative through succession into its later stages. The EMF increased with both stand age and mean annual precipitation. The structural equation model revealed that stand age, soil water content (SWC), and the multiple diversity indices altogether accounted for 56.0% of the variation in the EMF. PD and the CWMs of plant height and LDMC had positive effects on the EMF, and the FDvar of leaf nitrogen had negative effects on EMF. However, the Shannon Wiener diversity had no significant effect on the EMF. Our results suggest that functional and phylogenetic diversity are more important than taxonomic diversity in predicting EMF, and that multidimensional biodiversity indices should be jointly considered to better predict EMF during the succession of semiarid grasslands.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261620
Author(s):  
Abdullahi Bala Alhassan ◽  
Mohammed Othman Aljahdali

Mangrove ecosystems are some of the most productive and important sinks for sediment globally. Recently, there has been an increasing interest in possible causes of stress in mangroves, such as nutrient limitation, high salinity, solar radiation and temperature. We measured different factors casing stress and determined how they influenced oxidative stress and growth biomarkers in six study sites dominated by mangroves; Al Lith, South Jeddah, Dahban, Thuwal, Rabigh and Mastorah. Significant differences (P < 0.05) were recorded in water salinities and temperatures, nitrogen and phosphorus content in sediments, and antioxidant enzyme activities in different study sites. The highest salinity (40.75 ‰) and temperature (29.32°C) were recorded in the Rabigh mangrove stand, which corresponds to the lowest dissolved oxygen (5.21 mg/L). Total organic carbon, total nitrogen and total phosphorus in sediment across the study areas were in the order Rabigh>Thuwal>Dahban>Al Lith>South Jeddah>Mastorah. Total nitrogen in mangrove leaves at Rabigh was the highest and about 1.3 times higher than the total nitrogen in South Jeddah mangrove ecosystem, very different from the ratio of total nitrogen in the sediments at Rabigh and South Jeddah mangrove ecosystems. The average values of δ13C (-17.60‰) and δ15N (2.84‰) in the six mangrove ecosystems, and the highest δ13C (-13.62‰) and δ15N (4.39‰) at Rabigh in the sediments suggest that nutrient input differed among study sites. Higher nutrient levels at Rabigh mangrove ecosystem were attributed to restricted circulation, camel grazing and land runoff with agricultural waste during seasonal flooding events. However, N limitation and possibly salinity contributed to stress in Al Lith, South Jeddah, Dahban, Thuwal, Rabigh, and Mastorah mangrove ecosystems. Salinity (r = 0.9012) contribute more to stress at Rabigh.


2021 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Hye-Won Kim ◽  
Heon-Cheol Shin

In this study, nickel phosphide nanowires with various structures and compositions were fabricated for the first time via magnetically-assisted liquid phase synthesis. The curvature and aspect ratio of the nanowires largely depended on the strength of the magnetic field applied during synthesis. Their phosphorus content together with the morphology were significantly modified according to the pH and reducing agent concentration. Nanowires with different structures and phosphorus contents were preliminarily tested for their capabilities to serve in general electrochemical applications. The degree of reaction (i.e., amount of reaction charge) increased with increases in the reaction area and phosphorus content of the nanowires. The rate characteristics of the reaction showed a peculiar increasing trend for a small reaction surface area and low phosphorus content. A change in the ohmic overpotential according to the nanowire curvature (aspect ratio) and porosity was suggested to be the reason for this unusual trend. Electrodes with high phosphorus contents or high reaction surface areas rapidly deteriorated during repetitive redox reactions. Based on the results for the degradation degree, the effect of the reaction surface area dominated that of the phosphorus content in the deterioration of the nickel phosphide nanowires.


Author(s):  
Lingxiang Quan ◽  
Ailian Li ◽  
Guimei Cui ◽  
Shaofeng Xie

:An effective technology for predicting the end-point phosphorous content of basic oxygen furnace (BOF) can provide theoretical instruction to improve the quality of steel via controlling the hardness and toughness. Given the slightly inadequate prediction accuracy in the existing prediction model, a novel hybrid method was suggested to more accurately predict the end-point phosphorus content by integrating an enhanced sparrow search algorithm (ESSA) and a multi-strategy with a deep extreme learning machine (DELM) as ESSA-DELM in this study. To begin with, the input weights and hidden biases of DELM were randomly selected, resulting in that DELM inevitably had a set of non-optimal or unnecessary weights and biases. Therefore, the ESSA was used to optimize the DELM in this work. For the ESSA, the Trigonometric substitution mechanism and Cauchy mutation were introduced to avoid trapping in local optima and improve the global exploration capacity in SSA. Finally, to evaluate the prediction efficiency of ESSSA-DELM, the proposed model was tested on process data of the converter from the Baogang steel plant. The efficacy of ESSA-DELM was more superior to that of other DELM-based hybrid prediction models and conventional models. The result demonstrated that the hit rate of end-point phosphorus content within &plusmn;0.003%, &plusmn;0.002%, and &plusmn;0.001% was 91.67%, 83.33%, and 63.55%, respectively. The proposed ESSA-DELM model could possess better prediction accuracy compared with other models, which could guide field operations.


Sign in / Sign up

Export Citation Format

Share Document