Boundary layer ozone depletion during AGASP-II

1989 ◽  
Vol 23 (11) ◽  
pp. 2443-2449 ◽  
Author(s):  
R.E. Mickle ◽  
J.W. Bottenheim ◽  
W.R. Leaitch ◽  
W. Evans
2006 ◽  
Vol 40 (11) ◽  
pp. 1949-1956 ◽  
Author(s):  
Antonio Amoroso ◽  
Harry J. Beine ◽  
Roberto Sparapani ◽  
Marianna Nardino ◽  
Ivo Allegrini

2007 ◽  
Vol 7 (5) ◽  
pp. 1451-1469 ◽  
Author(s):  
S. Morin ◽  
J. Savarino ◽  
S. Bekki ◽  
S. Gong ◽  
J. W. Bottenheim

Abstract. We report the first measurements of the oxygen isotope anomaly of atmospheric inorganic nitrate from the Arctic. Nitrate samples and complementary data were collected at Alert, Nunavut, Canada (82°30 ' N, 62°19 ' W) in spring 2004. Covering the polar sunrise period, characterized by the occurrence of severe boundary layer ozone depletion events (ODEs), our data show a significant correlation between the variations of atmospheric ozone (O3) mixing ratios and Δ17O of nitrate (Δ17O(NO−3)). This relationship can be expressed as: Δ17O(NO−3)/‰, =(0.15±0.03)×O3/(nmol mol–1)+(29.7±0.7), with R2=0.70(n=12), for Δ17O(NO−3) ranging between 29 and 35 ‰. We derive mass-balance equations from chemical reactions operating in the Arctic boundary layer, that describe the evolution of Δ17O(NO−3) as a function of the concentrations of reactive species and their isotopic characteristics. Changes in the relative importance of O3, RO2 and BrO in the oxidation of NO during ODEs, and the large isotope anomalies of O3 and BrO, are the driving force for the variability in the measured Δ17O(NO−3) . BrONO2 hydrolysis is found to be a dominant source of nitrate in the Arctic boundary layer, in agreement with recent modeling studies.


2009 ◽  
Vol 9 (2) ◽  
pp. 8903-8941
Author(s):  
A. E. Jones ◽  
P. S. Anderson ◽  
M. Begoin ◽  
N. Brough ◽  
M. A. Hutterli ◽  
...  

Abstract. The source of bromine that drives polar boundary layer ozone depletion events (ODEs) is still open to some debate. While ODEs are generally noted to form under conditions of a shallow stable boundary layer, observations of depleted air under high wind conditions are taken as being transport-related. Here we report observations from Antarctica in which an unusually large cloud of BrO formed over the Weddell Sea. The enhanced BrO was observed over Halley station in coastal Antarctica, providing an opportunity to probe the conditions within an active "bromine explosion" event. On this occasion, enhanced BrO and depleted boundary layer ozone coincided with high wind speeds and saline blowing snow. We derive a simple model to consider the environmental conditions that favour ODEs and find two maxima, one at low wind/stable boundary layer and one at high wind speeds with blowing snow. Modelling calculations aiming to reproduce the wider regional or global impacts of ODEs, either via radiative effects or as a halogen source, will also need to account for high wind speed mechanisms.


Author(s):  
J. A. Seabrook ◽  
J. Whiteway ◽  
R. M. Staebler ◽  
J. W. Bottenheim ◽  
L. Komguem ◽  
...  

Nature ◽  
1992 ◽  
Vol 355 (6356) ◽  
pp. 150-152 ◽  
Author(s):  
J. C. McConnell ◽  
G. S. Henderson ◽  
L. Barrie ◽  
J. Bottenheim ◽  
H. Niki ◽  
...  

2009 ◽  
Vol 9 (14) ◽  
pp. 4639-4652 ◽  
Author(s):  
A. E. Jones ◽  
P. S. Anderson ◽  
M. Begoin ◽  
N. Brough ◽  
M. A. Hutterli ◽  
...  

Abstract. The source of bromine that drives polar boundary layer ozone depletion events (ODEs) is still open to some debate. While ODEs are generally noted to form under conditions of a shallow stable boundary layer, observations of depleted air under high wind conditions are taken as being transport-related. Here we report observations from Antarctica in which an unusually large cloud of BrO formed over the Weddell Sea. The enhanced BrO was observed over Halley station in coastal Antarctica, providing an opportunity to probe the conditions within an active "bromine explosion" event. On this occasion, enhanced BrO and depleted boundary layer ozone coincided with high wind speeds and saline blowing snow. We derive a simple model to consider the environmental conditions that favour ODEs and find two maxima, one at low wind/stable boundary layer and one at high wind speeds with blowing snow. Modelling calculations aiming to reproduce the wider regional or global impacts of ODEs, either via radiative effects or as a halogen source, will also need to account for high wind speed mechanisms.


Sign in / Sign up

Export Citation Format

Share Document