A three-dimensional model study on the production of BrO and Arctic boundary layer ozone depletion

2008 ◽  
Vol 113 (D24) ◽  
Author(s):  
T. L. Zhao ◽  
S. L. Gong ◽  
J. W. Bottenheim ◽  
J. C. McConnell ◽  
R. Sander ◽  
...  
1973 ◽  
Vol 95 (3) ◽  
pp. 429-438 ◽  
Author(s):  
J. W. Deardorff

A three-dimensional numerical model of turbulence in an atmospheric boundary layer has been revised to utilize subgrid transport equations for the subgrid Reynolds stresses and fluxes rather than subgrid eddy coefficients. It was applied to a daytime boundary layer over heated ground in a region of horizontal area 8km square and 2km deep, utilizing 40×40×40 grid points. The constraints involved in selecting four important subgrid closure constants are discussed in some detail, along with maintenance of realizability on the subgrid scale. The results indicate that the subgrid transport equations produce subgrid Reynolds stresses and fluxes which realistically simulate the transfer of larger scale variance to subgrid scales, provided truncation errors due to advective terms are not too large. They also show the superiority of this method over the use of (nonstability dependent) nonlinear eddy coefficients in maintaining the sharpness of the inversion base which lies above the mixed layer.


2006 ◽  
Vol 40 (11) ◽  
pp. 1949-1956 ◽  
Author(s):  
Antonio Amoroso ◽  
Harry J. Beine ◽  
Roberto Sparapani ◽  
Marianna Nardino ◽  
Ivo Allegrini

2000 ◽  
Vol 105 (D23) ◽  
pp. 28907-28933 ◽  
Author(s):  
Sigrún Karlsdóttir ◽  
Ivar S. A. Isaksen ◽  
Gunnar Myhre ◽  
Terje K. Berntsen

2009 ◽  
Vol 29 (11-12) ◽  
pp. 1515-1524 ◽  
Author(s):  
Richard Hofmeister ◽  
Hans Burchard ◽  
Karsten Bolding

2007 ◽  
Vol 7 (5) ◽  
pp. 1451-1469 ◽  
Author(s):  
S. Morin ◽  
J. Savarino ◽  
S. Bekki ◽  
S. Gong ◽  
J. W. Bottenheim

Abstract. We report the first measurements of the oxygen isotope anomaly of atmospheric inorganic nitrate from the Arctic. Nitrate samples and complementary data were collected at Alert, Nunavut, Canada (82°30 ' N, 62°19 ' W) in spring 2004. Covering the polar sunrise period, characterized by the occurrence of severe boundary layer ozone depletion events (ODEs), our data show a significant correlation between the variations of atmospheric ozone (O3) mixing ratios and Δ17O of nitrate (Δ17O(NO−3)). This relationship can be expressed as: Δ17O(NO−3)/‰, =(0.15±0.03)×O3/(nmol mol–1)+(29.7±0.7), with R2=0.70(n=12), for Δ17O(NO−3) ranging between 29 and 35 ‰. We derive mass-balance equations from chemical reactions operating in the Arctic boundary layer, that describe the evolution of Δ17O(NO−3) as a function of the concentrations of reactive species and their isotopic characteristics. Changes in the relative importance of O3, RO2 and BrO in the oxidation of NO during ODEs, and the large isotope anomalies of O3 and BrO, are the driving force for the variability in the measured Δ17O(NO−3) . BrONO2 hydrolysis is found to be a dominant source of nitrate in the Arctic boundary layer, in agreement with recent modeling studies.


Sign in / Sign up

Export Citation Format

Share Document