ozone depletion
Recently Published Documents


TOTAL DOCUMENTS

1427
(FIVE YEARS 210)

H-INDEX

85
(FIVE YEARS 6)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yi Jiao ◽  
Wanying Zhang ◽  
Jae Yun Robin Kim ◽  
Malte Julian Deventer ◽  
Julien Vollering ◽  
...  

AbstractMethyl bromide (CH3Br) and methyl chloride (CH3Cl) are major carriers of atmospheric bromine and chlorine, respectively, which can catalyze stratospheric ozone depletion. However, in our current understanding, there are missing sources associated with these two species. Here we investigate the effect of copper(II) on CH3Br and CH3Cl production from soil, seawater and model organic compounds: catechol (benzene-1,2-diol) and guaiacol (2-methoxyphenol). We show that copper sulfate (CuSO4) enhances CH3Br and CH3Cl production from soil and seawater, and it may be further amplified in conjunction with hydrogen peroxide (H2O2) or solar radiation. This represents an abiotic production pathway of CH3Br and CH3Cl perturbed by anthropogenic application of copper(II)-based chemicals. Hence, we suggest that the widespread application of copper(II) pesticides in agriculture and the discharge of anthropogenic copper(II) to the oceans may account for part of the missing sources of CH3Br and CH3Cl, and thereby contribute to stratospheric halogen load.


Author(s):  
Bongayi Kudoma ◽  
Memory Tekere

Abstract Environmental problems such as global warming, ozone depletion and climate change remain universal subjects of concern, with baneful effects on both the environment and human health. The consumption and venting of ozone depleting substances (ODS) into the atmosphere are the chief anthropogenic cause of ozone depletion. One such manmade ODS with high global warming potential Chlorodifluoromethane (HCFC-22). The MP targeted to phase-out HCFC-22 with obligatory cut-off timelines for its use by 2040 for developing nations. To comply with the HCFC-22 phase-out timelines, meant at embarking on national communications to disseminate information on HCFC-22 phase-out through key stakeholders’ involvement. The achievement of HCFC-22 phase-out strategy depends on participation of key stakeholders in the implementation process. the level of awareness and product knowledge of service stakeholders in the importation and distribution of HCFC-22 in Botswana. customs officers, officers and industrial consumers. Questionnaires and interviews were used to solicit key stakeholders’ views, opinions and perceptions on HCFC-22 phase-out awareness and product knowledge. Results revealed that 87% of the stakeholders are learned and knowledgeable in ODS related service provision. The level of HCFC-22 knowledge and awareness among stakeholders is moderate with distinguished inter-group differences. In particular, industrial consumers had the highest median level of HCFC-22 awareness than other stakeholders, indicating gaps in HCFC-22 phase-out awareness raising and training. About 67% of respondents had low levels of awareness of the HPMP and alternative technologies to HCFC-22. This proposes gaps in information dissemination to key stakeholders and this remains a crucial disparity between the country’s HPMP success lead and lag indicators. There is need to carefully select communication media used in line with the media consumption habits of target markets. Use of popular and commonly accessed social-media platforms would ensure that the HCFC-22 phase-out messages have high chance of reaching targeted stakeholders and the general population.


MAUSAM ◽  
2021 ◽  
Vol 42 (4) ◽  
pp. 333-338
Author(s):  
V. THAPLIYAL ◽  
S.M. KULSHRESTHA

Based on the instrumental observations of over a century available in India, attempt is made to study if there is a clear-cut evidence of any climate change or trend over .India with particular reference to rainfall, surface temperature, atmospheric pressure and total ozone. The study concludes that while there are year to year random. fluctuations in these atmospheric variables and there are certain epochal increases and decreases in respect of rainfall and .surface temperature, .there appears to be no systematic climate charge or trend over India. There IS also no evidence of ozone depletion over India.


YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 780-789
Author(s):  
Dr. T Pugalenthi ◽  

The intense changes in climate change directly and indirectly affect the agriculture, food supply and even the service sectors. Hence, as we people have to change our method of agriculture and other elated activates. The study was conducted in Chidambaram Taluk in Cuddalore District. The present study covered the four villages and five wards were selected from town. First, selection of village which are nearer to the town and wards in the town often affected by heavy rain, drought during summer and in general affected agriculture, food supply. Proportionate Random sampling techniques was used. Total sample size was 180 as proportionate to the population in the wards and villages. Finally 172 were used for the analysis and presentation. The study conducted with the following objectives.To understand the socio-economic and demographic conditions of the respondents in the study area, To examine the resilience of climate changes among the rural respondents and to analyse the use of different method used among the respondents in the study area To prove the association between the variables such as sex, place, religion, caste, occupation, income of the family, age, presently cropping. Holding agricultural lands statistically prove, the resilience accepted by place, education. Presently cropping and those who were having agricultural lands in the study area were significantly associated at 1% level. Income of the family religion, caste were significantly associated at 5% level. Create awareness campaign about the ozone depletion and the effects ozone depletion in both rural and urban areas. Insurance scheme on flood damage was poor response in rural areas but it was little higher in urban areas as they were all affected in the past 5 years than rural people. Adaptation of forecasting system was also poor in rural areas. Motivate the rural people to follow forecasting measures given by the government agencies and NGOs.


2021 ◽  
Vol 7 (52) ◽  
Author(s):  
Theodore K. Koenig ◽  
Rainer Volkamer ◽  
Eric C. Apel ◽  
James F. Bresch ◽  
Carlos A. Cuevas ◽  
...  

MAUSAM ◽  
2021 ◽  
Vol 64 (4) ◽  
pp. 613-624
Author(s):  
R.P. LAL ◽  
SURESH RAM

Hkkjr ekSle foKku foHkkx }kjk Hkkjrh; bysDVªks&dsfedy vkstksulkSans dh enn ls ,aVkdZfVdk ij Hkkjr ds nwljs LVs'ku eS=h ¼70-7 fMxzh n-] 11-7 fMxzh iw-½ ls vkstksu fLFkfr ¼izksQkby½ dk fu;fer eki fd;k tk jgk gSA ok;qeaMy ds mnxz LraHk esa vkstksu ds ?kuRo dh x.kuk iwjs o"kZ esa fy, x, lkIrkfgd vkstksu lkmfUMax ls dh tkrh gSA ok;qeaMyh; vkstksu dh mnxz fLFkfr ¼izksQkby vkSj vkstksu fNnz ¼gksy½ dh fo'ks"krkvksa dk v/;;u djus ds fy, flracj&vDVwcj ekg ds nkSjku cgqr ckj ifjKfIr;k¡ ¼lkmfUMax½ yh xbZ gSaA bl 'kks/k i= esa lrg ls 10 gsDVk ik- ds chp vkstksu vkSj rkieku ds ekfld ,oa okf"kZd vkSlr esa fofo/krk dh x.kuk ,oa fo'ys"k.k o"kZ 1999 ls 2007 dh vof/k esa fy, vkstksulkSans vkjksg.kksa ls fd;k x;k gSA bl v/;;u ls irk pyk gS fd vkstksu fNnz ds laca/k esa xgu vo{k; vDrwcj esa vkSj vYi ijUrq egRoiw.kZ vo{k; flracj ekg esa gqvk gSA vDrwcj esa yxHkx 250 ,oa 20 gs-ik- ds chp lcls lqLi"V vo{k; gqvk gS ftlesa vf/kdre LFkkuh; vkstksu ds Lrj esa 70 gs-ik- vkSj 10 gs- ik- ds Lrjksa ij vkSj flrEcj esa 70 gs- ik- ij fxjkoV  ns[kh xbZA fHkUu&fHkUu nkc Lrjksa ds fy, vkstksu dk rkieku ds lkFk lglaca/k ls ubZ tkudkfj;ksa vkSj vkstksu ifjorZu esa foLrkj dk irk pyk gSA iwjs o"kZ esa 300 ls 50 gs- ik- ds chp U;wure okf"kZd vkSlr rkieku -55 fMxzh ls -63 fMxzh lsaVhxzsM rd cnyrk gSA vxLr vkSj flrEcj ds eghuksa esa     70 gs- ik- rFkk 100 gs- ik- Lrjksa ij rkieku dk -80 fMxzh lsaVhxzsM ls de gksuk ,oa vDrwcj ekg esa 70 gs- ik- rFkk 100 gs- ik- Lrjksa ij yxHkx -70 fMxzh lsaVhxzsM ls de gksus dh fLFkfr dks vDrwcj ekg esa vkst+ksu vo{k; ds ladsrd ds :i esa ekuk tk ldrk gSA Regular ozone profile measurement over Antarctica has been made by India Meteorological Department over Indian second station Maitri (70.7° S, 11.7° E) with the help of Indian electro-chemical ozonesonde. Ozone density in the vertical column of the atmosphere is computed with weekly ozone soundings taken throughout the year. During the month of September- October more frequent soundings were taken to study vertical profile of atmospheric ozone and features of ozone hole. The mean monthly and yearly variation of ozone and temperature from surface to 10 hPa has been computed and analyzed from the ozonesonde ascents for the period 1999 to 2007. The study has shown profound depletion in October and lesser but substantial depletion in September, in association with the ozone hole. Depletion is most pronounced between about 250 and 20 hPa in October, with maximum local ozone losses near   70 hPa & 100 hPa levels and in September at 70 hPa. Ozone correlations with temperature for several pressure levels have revealed new insights into the causes and extent of ozone change. Lowest annual mean temperature varies from -55 to -63 °C between 300 to 50 hPa in all the year. The temperature less than -80 °C in months of August & September at 70 hPa & 100 hPa levels and about -70 °C in month of October at 70 hPa & 100 hPa levels can be attributed as an indicator of ozone depletion in months of October


2021 ◽  
Author(s):  
Bianca Zilker ◽  
Anne-Marlene Blechschmidt ◽  
Sora Seo ◽  
Ilias Bougoudis ◽  
Tim Bösch ◽  
...  

<p align="justify">Bromine Explosion Events (BEEs) have been observed since the late 1990s in the Arctic and Antarctic during polar spring and play an important role in tropospheric chemistry. In a heterogeneous, autocatalytic, chemical chain reaction cycle, inorganic bromine is released from the cryosphere into the troposphere and depletes ozone often to below detection limit. Ozone is a source of the most important tropospheric oxidizing agent OH and the oxidizing capacity and radiative forcing of the troposphere are thus being impacted. Bromine also reacts with gaseous mercury, thereby facilitating the deposition of toxic mercury, which has adverse environmental impacts. C<span lang="en-US">old saline surfaces, such as young sea ice, frost flowers, and snow are likely bromine sources </span><span lang="en-US">during BEEs. </span><span lang="en-US">D</span>ifferent meteorological conditions seem to favor the development of these events: on the one hand, low wind speeds and a stable boundary layer, where bromine can accumulate and deplete ozone, and on the other hand, high wind speeds above approximately 10 m/s with blowing snow and a higher unstable boundary layer. In high wind speed conditions – occurring for example along fronts of polar cyclones – recycling of bromine on snow and aerosol surfaces may take place aloft.</p> <p align="justify">To improve the understanding of weather conditions and bromine sources leading to the development of BEEs, case studies using high resolution S5P TROPOMI retrievals of tropospheric BrO together with meteorological simulations by the WRF model and Lagrangian transport simulations of BrO by FLEXPART-WRF are carried out. WRF simulations show, that high tropospheric BrO columns observed by TROPOMI often coincide with areas of high wind speeds. This probably points to release of bromine from blowing snow with cold temperatures favoring the bromine explosion reactions. However, some BrO plumes are observed over areas with very low wind speed and a stable low boundary layer. To monitor the amount of ozone depleted during a BEE, ozone sonde measurements from Ny-Ålesund are compared with MAX-DOAS BrO profiles. First evaluations show a drastic decrease in ozone, partly below the detection limit, while measuring enhanced BrO values at the same time. <span lang="en-US">In order to analyze </span><span lang="en-US">the possible origin</span><span lang="en-US"> of the BrO </span><span lang="en-US">plume </span><span lang="en-US">arriving in </span><span lang="en-US">Ny-</span><span lang="en-US">Å</span><span lang="en-US">lesund</span><span lang="en-US">, </span><span lang="en-US">and to investigate its transportation route, </span><span lang="en-US">FLEXPART-WRF runs are </span><span lang="en-US">executed </span><span lang="en-US">for the times of observed ozone depletion.</span></p> <p align="justify"> </p> <p align="justify"><em>This work was supported by the</em><em> DFG funded Transregio-project TR 172 “Arctic Amplification </em>(AC)<sup>3</sup><em>“.</em></p>


2021 ◽  
Author(s):  
Kevin Ohneiser ◽  
Albert Ansmann ◽  
Ronny Engelmann ◽  
Boris Barja ◽  
Holger Baars ◽  
...  

<p>The highlight of our multiwavelength polarization Raman lidar measurements during the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition in the Arctic Ocean ice from October 2019 to May 2020 was the detection of a persistent, 10 km deep aerosol layer in the upper troposphere and lower stratosphere (UTLS) with clear and unambiguous wild-fire smoke signatures. The smoke is supposed to originate from extraordinarily intense and long-lasting wildfires in central and eastern Siberia in July and August 2019 and may have reached the tropopause layer by the self-lifting process.</p><p>Temporally almost parallelly, record-breaking wildfires accompanied by unprecedentedly strong pyroconvection were raging in the south-eastern part of Australia in late December 2019 and early January 2020. These fires injected huge amounts of biomass-burning smoke into the stratosphere where the smoke particles became distributed over the entire southern hemispheric in the UTLS regime from 10-30 km to even 35 km height. The stratospheric smoke layer was monitored with our Raman lidar in Punta Arenas (53.2°S, 70.9°W, Chile, southern South America) for two years.</p><p>The fact that these two events in both hemispheres coincided with record-breaking ozone hole events in both hemispheres in the respective spring seasons motivated us to discuss a potential impact of the smoke particles on the strong ozone depletion. The discussion is based on the overlapping height ranges of the smoke particles, polar stratospheric clouds, and the ozone hole regions. It is well known that strong ozone reduction is linked to the development of a strong and long-lasting polar vortex, which favours increased PSC formation. In these clouds, active chlorine components are produced via heterogeneous chemical processes on the surface of the PSC particles. Finally, the chlorine species destroy ozone molecules in the spring season. However, there are two pathways to influence ozone depletion by aerosol pollution. The particles can influence the evolution of PSCs and specifically their microphysical properties (number concentration and size distribution), and on the other hand, the particles can be directly involved in heterogeneous chemical processes by increasing the particle surface area available to convert nonreactive chlorine components into reactive forms. A third (indirect) impact of smoke, when well distributed over large parts of the Northern or Southern hemispheres, is via the influence on large-scale atmospheric dynamics.</p><p>We will show our long-term smoke lidar observations in the central Arctic and in Punta Arenas as well as ozone profile measurements during the ozone-depletion seasons. Based on these aerosol and ozone profile data we will discuss the potential interaction between smoke and ozone.</p>


2021 ◽  
Author(s):  
Andrey A. Pershin ◽  
Alexei P. Torbin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document