Chlorophyll b deficiency in soybean mutants. I. Effects on photosystem stoichiometry and chlorophyll antenna size

1988 ◽  
Vol 932 ◽  
pp. 130-137 ◽  
Author(s):  
Maria L. Ghirardi ◽  
Anastasios Melis
2020 ◽  
Vol 22 (1) ◽  
pp. 221
Author(s):  
Joanna Wójtowicz ◽  
Adam K. Jagielski ◽  
Agnieszka Mostowska ◽  
Katarzyna B. Gieczewska

The origin of chlorophyll b deficiency is a mutation (ch1) in chlorophyllide a oxygenase (CAO), the enzyme responsible for Chl b synthesis. Regulation of Chl b synthesis is essential for understanding the mechanism of plant acclimation to various conditions. Therefore, the main aim of this study was to find the strategy in plants for compensation of low chlorophyll content by characterizing and comparing the performance and spectral properties of the photosynthetic apparatus related to the lipid and protein composition in four selected Arabidopsis ch1 mutants and two Arabidopsis ecotypes. Mutation in different loci of the CAO gene, viz., NW41, ch1.1, ch1.2 and ch1.3, manifested itself in a distinct chlorina phenotype, pigment and photosynthetic protein composition. Changes in the CAO mRNA levels and chlorophyllide a (Chlide a) content in ecotypes and ch1 mutants indicated their significant role in the adjustment mechanism of the photosynthetic apparatus to low-light conditions. Exposure of mutants with a lower chlorophyll b content to short-term (1LL) and long-term low-light stress (10LL) enabled showing a shift in the structure of the PSI and PSII complexes via spectral analysis and the thylakoid composition studies. We demonstrated that both ecotypes, Col-1 and Ler-0, reacted to high-light (HL) conditions in a way remarkably resembling the response of ch1 mutants to normal (NL) conditions. We also presented possible ways of regulating the conversion of chlorophyll a to b depending on the type of light stress conditions.


Light-induced absorbance change and fluorescence measurements were employed in the quantitation of photosystem stoichiometry and in the measurement of the chlorophyll (Chl) antenna size in thylakoid membranes. Results with thylakoid membranes from diverse photosynthetic tissues indicated a PSII/PSI reaction-centre stoichiometry that deviates from unity. Cyanobacteria and red algae have a PSII/PSI ratio in the range of 0.3 to 0.7. Chloroplasts from spinach and other vascular-plant species grown under direct sunlight have PSII/PSI = 1.8±0.3. Chlorophyll b -deficient and Chi b -lacking mutants have PSII/PSI > 2. The observation that PSII/PSI ratios are not unity and show a large variation among different photosynthetic membranes appears to be contrary to the conventional assumption derived from the Z-scheme. However, the photosystem stoichiometry is not the only factor that needs to be taken into account to explain the coordination of the two photosystems in the process of linear electron transport. The light-harvesting capacity of each photosystem must also be considered. In cyanobacterial thylakoids (from Synechococcus 6301, PSII/PSI = 0.5±0.2), the phycobilisome-PSII complexes collectively harvest as much light as the PSI complexes. In vascular plant chloroplasts, the light-harvesting capacity of a PSI I complex (250 molecules, Chi a/Chi b = 1.7) is lower than that of a PSI complex (230 Chl, Chl a /Chl b = 8.0) because Chi b has a lower extinction coefficient than Chi a . A differential attenuation of light intensity through the grana further reduces the light absorbed by PSII. Hence, a PSII/PSI ratio greater than one in vascular-plant chloroplasts compensates for the lower absorption of light by individual PSII complexes and ensures that, on average, PSII will harvest about as much light as PSI. In conclusion, distinct light-harvesting strategies among diverse plant species complement widely different photosystem stoichiometries to ensure a balanced absorption of light and a balanced electron flow between the two photoreactions, thereby satisfying the requirement set forth upon the formulation of the Z-scheme by Hill & Bendall ( Nature, Lond. 186, 136-137 (1960)) and by Duysens, Amesz & Kamp ( Nature, Lond . 190, 510-511 (1961)).


1990 ◽  
Vol 17 (6) ◽  
pp. 665 ◽  
Author(s):  
W.S Chow ◽  
J.M Anderson ◽  
A Melis

The concentrations of functional photosystem I1 (PSII) reaction centres in leaves and photosystem I reaction centres (P700) in thylakoids isolated from comparable leaves of Australian shade-adapted plant species of diverse taxa, life-forms and habitats were compared. The concentrations of PSII were determined directly in leaves by the oxygen yield per single-turnover flash in the presence of far-red background illumination. The concentrations of P700 were determined by the light-induced absorbance change of thylakoid membranes at 703 nm. On a chlorophyll basis, the amounts of both functional PSII and P700 were lower in shade species than in sun species. The PSII/PSI reaction centre stoichiometries of the shade species ranged from 1.2 to 1.9 indicating that (i) shade-adapted species do not have a fixed 1: 1 ratio; and (ii) their PSWPSI ratios are usually lower than those of sun species (1.7-1.8). We conclude that shade plants display variable photosystem stoichiometry. The results are discussed in terms of the interplay between the adjustment of photosystem stoichiometry and that of the light-harvesting chlorophyll antenna size of each photosystem in the thylakoid membrane of shade species.


Sign in / Sign up

Export Citation Format

Share Document