electron flow
Recently Published Documents


TOTAL DOCUMENTS

1610
(FIVE YEARS 296)

H-INDEX

90
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Abhiney Jain ◽  
Anaísa Coelho ◽  
Joana Madjarov ◽  
Smilja Todorovic ◽  
Ricardo O. Louro ◽  
...  

The freshwater chemolithoautotrophic Gram-negative bacterium Sideroxydans lithotrophicus ES-1 oxidizes Fe(II) at the cell surface. In this organism, it is proposed that the monoheme cytochrome MtoD from the Mto pathway transfer electrons across the periplasm to an inner membrane NapC/NirT family tetraheme cytochrome encoded by Slit_2495, for which we propose the name ImoA (inner membrane oxidoreductase). ImoA has been proposed to function as the quinone reductase, receiving electrons from iron oxidizing extracellular electron uptake pathway to reduce the quinone pool. In this study, ImoA was cloned on a pBAD plasmid vector and overexpressed in Escherichia coli. Biochemical and spectroscopic characterization of the purified ImoA reveals that this 26.5 kDa cytochrome contains one high-spin and three low-spin hemes. Our data show that ImoA can function as a quinol oxidase and is able to functionally replace CymA, a related NapC/NirT family tetraheme cytochrome required for anaerobic respiration of a wide range of substrates by Shewanella oneidensis. We demonstrate that ImoA can transfer electrons to different periplasmic proteins from S. oneidensis including STC and FccA, but in a manner that is distinct from that of CymA. Phylogenetic analysis shows that ImoA is clustered closer to NirT sequences than to CymA. This study suggests that ImoA functions as a quinol oxidase in S. oneidensis and raises questions about the directionality and/or reversibility of electron flow through the Mto pathway in S. lithotrophicus ES-1.


2022 ◽  
Author(s):  
Felix Buchert ◽  
Martin Scholz ◽  
Michael Hippler

The cytochrome b6f complex (b6f) has been initially considered as the ferredoxin-plastoquinone reductase (FQR) during cyclic electron flow (CEF) with photosystem I that is inhibited by antimycin A (AA). The binding of AA to the b6f Qi-site is aggravated by heme-ci, which challenged the FQR function of b6f during CEF. Alternative models suggest that PROTON GRADIENT REGULATION5 (PGR5) is involved in a b6f-independent, AA-sensitive FQR. Here, we show in Chlamydomonas reinhardtii that the b6f is conditionally inhibited by AA in vivo and that the inhibition did not require PGR5. Instead, activation of the STT7 kinase upon anaerobic treatment induced the AA sensitivity of b6f which was absent in stt7-1. However, a lock in State 2 due to persisting phosphorylation in the phosphatase double mutant pph1;pbcp did not increase AA sensitivity of electron transfer. The latter required a redox poise, supporting the view that state transitions and CEF are not coercively coupled. This suggests that the b6f-interacting kinase is required for structure-function modulation of the Qi-site under CEF favoring conditions. We propose that PGR5 and STT7 independently sustain AA-sensitive FQR activity of the b6f. Accordingly, PGR5-mediated electron injection into an STT7-modulated Qi-site drives a Mitchellian Q cycle in CEF conditions.


Author(s):  
Sinead C. Leahy ◽  
Peter H. Janssen ◽  
Graeme T. Attwood ◽  
Roderick I. Mackie ◽  
Tim A. McAllister ◽  
...  
Keyword(s):  

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 60
Author(s):  
Lyubov Yudina ◽  
Ekaterina Sukhova ◽  
Maxim Mudrilov ◽  
Vladimir Nerush ◽  
Anna Pecherina ◽  
...  

LED illumination can have a narrow spectral band; its intensity and time regime are regulated within a wide range. These characteristics are the potential basis for the use of a combination of LEDs for plant cultivation because light is the energy source that is used by plants as well as the regulator of photosynthesis, and the regulator of other physiological processes (e.g., plant development), and can cause plant damage under certain stress conditions. As a result, analyzing the influence of light spectra on physiological and growth characteristics during cultivation of different plant species is an important problem. In the present work, we investigated the influence of two variants of LED illumination (red light at an increased intensity, the “red” variant, and blue light at an increased intensity, the “blue” variant) on the parameters of photosynthetic dark and light reactions, respiration rate, leaf reflectance indices, and biomass, among other factors in lettuce (Lactuca sativa L.). The same light intensity (about 180 µmol m−2s−1) was used in both variants. It was shown that the blue illumination variant increased the dark respiration rate (35–130%) and cyclic electron flow around photosystem I (18–26% at the maximal intensity of the actinic light) in comparison to the red variant; the effects were dependent on the duration of cultivation. In contrast, the blue variant decreased the rate of the photosynthetic linear electron flow (13–26%) and various plant growth parameters, such as final biomass (about 40%). Some reflectance indices (e.g., the Zarco-Tejada and Miller Index, an index that is related to the core sizes and light-harvesting complex of photosystem I), were also strongly dependent on the illumination variant. Thus, our results show that the red illumination variant contributes a great deal to lettuce growth; in contrast, the blue variant contributes to stress changes, including the activation of cyclic electron flow around photosystem I.


Nanoscale ◽  
2022 ◽  
Author(s):  
Xian Wang ◽  
Yingqi Cui ◽  
Li Zhang ◽  
Mingli Yang

While multilayer graphene (MLG) possesses excellent intralayer electron mobility, its interlayer electrical conductance exhibits great diversity that results in exotic phenomena and various applications in electronic devices. Driven by a...


Author(s):  
М.Е. Муретова ◽  
Ф.И. Зубов ◽  
Л.В. Асрян ◽  
Ю.М. Шерняков ◽  
М.В. Максимов ◽  
...  

Using numerical simulation, a search is carried out for designs of asymmetric barrier layers (ABLs) for a laser diode having GaAs waveguide and emitting at the wavelength λ = 980 nm. A pair of ABLs, adjoining the active region on both sides, blocks undesired charge carrier flows and suppresses parasitic spontaneous recombination in the waveguide layers. Optimal designs of ABLs based on AlGaAsSb and GaInP for blocking electrons and holes, respectively, are proposed that make it possible to reduce the parasitic recombination current down to less than 1% of the initial value. To suppress electron transport, an alternative structure based on three identical AlInAs barriers is also proposed. The GaAsP spacers separating these barriers from each other have different thicknesses. Due to this, its own set of quasi-bound (resonant) states is formed in each spacer that is different from the neighbor spacer set of states. As a result of this, the resonant tunneling channels are blocked: the parasitic electron flow is reduced by several tens of times in comparison with the case of spacers of equal thickness.


Author(s):  
Oleksandr Mazmanishvili ◽  
Nikolay Reshetnyak ◽  
Ganna Sydorenko

The article presents the results of research and calculations on the formation of a radial electron beam by a magnetron gun with a secondary emission cathode in the electron energy range 35...65 keV and measuring its parameters during transportation in the total decreasing magnetic field of thesolenoid and the stray field of permanent magnets. The beam was transported in a system consisting of copper rings with an inner diameter of 66 mm,located at a distance of 85 mm from the exit of the magnetron gun. The dependence of the beam current on the amplitude and gradient of the fielddecay has been studied. The studies carried out have shown the possibility of stable formation of a radial electron beam with an energy of tens of keVin the decreasing magnetic field of the solenoid. By optimizing the distribution of the magnetic field (created by the solenoid and ring magnets) and itsdecay gradient, it is possible to achieve an increase in the incident of electrons on one ring (up to ~72% of the beam current). On the basis of themathematical model of the movement of the electron flow, a software tool has been synthesized that makes it possible to obtain and interpret thecharacteristics of the resulting flows. The obtained numerical dependences are in satisfactory agreement with the experimental results for a magneticfield with a large decay gradient. Various configurations of the magnetic field are considered. Solutions to the direct problem of modeling electrontrajectories for given initial conditions and parameters are obtained. Various configurations of the magnetic field are considered. It is shown that forthe selected initial conditions for the electron beam and the distributions of the longitudinal magnetic field along the axis of the gun and the transportchannel, the electron flux falls on a vertical section, the length of which is on the order of a millimeter. Thus, by changing the amplitude anddistribution of the magnetic field, it is possible to control the current in the radial direction along the length of the pipe, and, therefore, the place of theelectron irradiation.


2021 ◽  
Author(s):  
Gang Wu ◽  
Ming Zhou ◽  
Kehan Chen ◽  
Lie Wang ◽  
Jiemin Shen ◽  
...  

Six transmembrane epithelial antigen of the prostate (STEAP) is a family of membrane-embedded metal ion reductases that transfer electrons across the cell membranes. STEAPs are unique to mammals and implicated in metabolic and inflammatory responses and are significantly upregulated in many types of cancer cells. There are four members in the family, STEAP1 - 4, and all STEAPs have a transmembrane domain (TMD) that has a conserved heme binding site, and STEAP2 - 4, but not STEAP1, have an intracellular reductase domain (RED) that binds to NADPH and FAD. NADPH, FAD, and heme form an electron transfer chain that allows electron flow across the cell membranes, however, the mechanism of the stepwise cross-membrane electron transfer remains unclear. It is also unclear how STEAP1, which does not have a RED, acquires and transfers electrons. We expressed and purified human STEAP2 (hSTEAP2), and constructed the electron transfer chain in vitro. Purified hSTEAP2 mediates electron transfer from NADPH to FAD and to heme, with a NADPH oxidation rate of 0.0026 per second. The time course for reduction of heme is more complex with an initial rate of ~ 0.00016 per second. We also found that the heme in hSTEAP2 has a low-spin electron structure and thus a rigid coordination, which is consistent with its high occupancy in the purified protein and its role as part of the electron transfer chain. We then determined the structure of hSTEAP2 in complex with NADP, FAD, and heme by cryo-electron microscopy to 3.2 Å. Human STEAP2 forms a homotrimer and its structure is similar to that of hSTEAP4. NADP+, FAD, and heme are well-resolved in the structure, and while the current conformation would allow electron transfer from FAD to heme, the FAD isoalloxazine ring is ~ 19 Å away from NADPH and does not support hydride transfer. Significant structural changes are required to accommodate dissociation of the FAD isoalloxazine ring from the TMD such that the FAD may become diffusible after its reduction. To test this hypothesis and also to find out how STEAP1 may transfer electrons, we reconstructed an electron transfer chain for STEAP1 and found that the heme in STEAP1 can be reduced by FAD produced either by the full-length STEAP2 or by the soluble RED domain from STEAP4. These results support a diffusible FAD mechanism and demonstrate that STEAP1 is capable of mediating electron transfer across the cell membranes. In summary, our study established a structural and functional framework for further analyses for resolving the mechanism of electron transfer in STEAPs.


2021 ◽  
Author(s):  
Shin-Ichiro Ozawa ◽  
Felix E. Buchert ◽  
Ruby Reuys ◽  
Michael Hippler ◽  
Yuichiro Takahashi

Linear photosynthetic electron flow (LEF) produces NADPH and generates a proton electrochemical potential gradient across the thylakoid membrane used to synthesize ATP, both of which are required for CO2 fixation. As cellular demand for ATP and NADPH are variable, cyclic electron flow (CEF) between PSI and cytochrome b6f complex (b6f) produces extra ATP. The b6f regulates LEF and CEF via photosynthetic control, which is a pH-dependent b6f slowdown of plastoquinol oxidation at the lumenal site. This protection mechanism is triggered at more alkaline lumen pH in the pgr1 mutant of the vascular plant Arabidopsis thaliana, carrying Pro194Leu in the b6f Rieske Iron-sulfur protein. In this work, we introduced pgr1 mutation in the green alga Chlamydomonas reinhardtii (PETC-P171L). Consistent with pgr1 phenotype, PETC-P171L displayed a limited photosynthesis along with slower photoautotrophic growth under high light conditions. Our data under low oxygen revealed that the ΔpH component in algae was already sufficient to trigger the effect in PETC-P171L in sub-saturating light conditions where the mutant b6f was more restricted to oxidize the PQ pool and revealed a diminished electron flow.


2021 ◽  
Vol 22 (24) ◽  
pp. 13490
Author(s):  
Nahidah Bashir ◽  
Habib-ur-Rehman Athar ◽  
Hazem M. Kalaji ◽  
Jacek Wróbel ◽  
Seema Mahmood ◽  
...  

Drought is one of the most important abiotic stress factors limiting maize production worldwide. The objective of this study was to investigate whether photoprotection of PSII was associated with the degree of drought tolerance and yield in three maize hybrids (30Y87, 31R88, P3939). To do this, three maize hybrids were subjected to three cycles of drought, and we measured the activities of photosystem II (PSII) and photosystem I (PSI). In a second field experiment, three maize hybrids were subjected to drought by withholding irrigation, and plant water status, yield and yield attributes were measured. Drought stress decreased leaf water potential (ΨL) in three maize hybrids, and this reduction was more pronounced in hybrid P3939 (−40%) compared to that of 30Y87 (−30%). Yield and yield attributes of three maize hybrids were adversely affected by drought. The number of kernels and 100-kernel weight was the highest in maize hybrid 30Y87 (−56%, −6%), whereas these were lowest in hybrid P3939 (−88%, −23%). Drought stress reduced the quantum yield of PSII [Y(II)], photochemical quenching (qP), electron transport rate through PSII [ETR(II)] and NPQ, except in P3939. Among the components of NPQ, drought increased the Y(NPQ) with concomitant decrease in Y(NO) only in P3939, whereas Y(NO) increased in drought-stressed plants of hybrid 30Y87 and 31R88. However, an increase in cyclic electron flow (CEF) around PSI and Y(NPQ) in P3939 might have protected the photosynthetic machinery but it did not translate in yield. However, drought-stressed plants of 30Y87 might have sufficiently downregulated PSII to match the energy consumption in downstream biochemical processes. Thus, changes in PSII and PSI activity and development of NPQ through CEF are physiological mechanisms to protect the photosynthetic apparatus, but an appropriate balance between these physiological processes is required, without which plant productivity may decline.


Sign in / Sign up

Export Citation Format

Share Document