Measurement of plasma membrane potential in isolated rat hepatocytes using the lipophilic cation, tetraphenylphosphonium: Correction of probe intracellular binding and mitochondrial accumulation

1992 ◽  
Vol 1111 (2) ◽  
pp. 221-230 ◽  
Author(s):  
Shuichi Saito ◽  
Yusuke Murakami ◽  
Seiji Miyauchi ◽  
Naoki Kamo
1985 ◽  
Vol 249 (4) ◽  
pp. G427-G433
Author(s):  
J. W. Edmondson ◽  
B. A. Miller ◽  
L. Lumeng

Since glucagon can hyperpolarize hepatic plasma membrane and stimulate biliary bile acid secretion in vitro, we studied the effect of glucagon on taurocholate uptake and its relationship to plasma membrane potential in isolated rat hepatocytes. [14C]taurocholate uptake was linear through 1 min and contained a saturable sodium-dependent and a nonsaturable sodium-independent component. Km of taurocholate uptake by the sodium-dependent system was 18.4 microM. Hill coefficient for Na+ was 2.59 and for taurocholate was 1.1, suggesting that the stoichiometry is 2 Na+:1 bile acid. Stimulation of taurocholate uptake by glucagon was limited to the sodium-dependent component, detected within 5 min of hormone exposure, and was maximum at 30 min. Glucagon, from 10(-8) to 10(-5) M, stimulated taurocholate uptake and hyperpolarized concurrently the plasma membrane potential. Because valinomycin produced a dose-related depolarization of plasma membrane potential, this agent was used to counteract the effects of glucagon. With 10(-6) M glucagon, valinomycin (10(-10) M) depolarized membrane potential from -35.50 to -28.00 mV and inhibited taurocholate uptake from 60% above the control rate to 5% below. These data strongly suggest that taurocholate uptake by isolated hepatocytes is an electrogenic process, and its stimulation by glucagon may be mediated by changes in plasma membrane potential.


1989 ◽  
Vol 4 (3) ◽  
pp. 221-227 ◽  
Author(s):  
ANTONIO BENEDETTI ◽  
GIANNA FERRETTI ◽  
GIOVANNA CURATOLA ◽  
EUGENIO BRUNELLI ◽  
ANNE MARIE JÉZÉQUEL ◽  
...  

1997 ◽  
Vol 152 (3) ◽  
pp. 407-412 ◽  
Author(s):  
M Montiel ◽  
M C Caro ◽  
E Jiménez

Angiotensin II (Ang II) provokes rapid internalisation of its receptor from plasma membranes in isolated rat hepatocytes. After 10 min stimulation with Ang II, plasma membrane lost about 60% of its 125I-Ang II-binding capacity. Internalisation was blocked by phenylarsine oxide (PhAsO), whereas okadaic acid, which markedly reduced the sustained phase of calcium mobilization, did not have a preventive effect on Ang II–receptor complex sequestration. These data suggest that Ang II receptor internalisation is probably independent of a phosphorylation/dephosphorylation cycle of critical serine/threonine residues in the receptor molecule. To establish a relationship between sequestration of the Ang II receptor and the physical properties of the Ang II-binding sites, 125I-Ang II–receptor complex profiles were analysed by isoelectric focusing. In plasma membrane preparations two predominant Ang II-binding sites, migrating to pI 6·8 and 6·5 were found. After exposure to Ang II, cells lost 125I-Ang II-binding capacity to the Ang II–receptor complex migrating at pI 6·8 which was prevented in PhAsO-treated cells. Pretreatment of hepatocytes with okadaic acid did not modify Ang II–receptor complex profiles, indicating that the binding sites corresponding to pI 6·5 and pI 6·8 do not represent a phosphorylated and/or non-phosphorylated form of the Ang II receptor. The results show that the Ang II–receptor complex isoform at pI 6·8 represents a functional form of the type-1 Ang II receptor. Further studies are necessary to identify the Ang II-related nature of the binding sites corresponding to pI 6·5. Journal of Endocrinology (1997) 152, 407–412


1988 ◽  
Vol 255 (4) ◽  
pp. G403-G408 ◽  
Author(s):  
J. C. Fernandez-Checa ◽  
C. Ren ◽  
T. Y. Aw ◽  
M. Ookhtens ◽  
N. Kaplowitz

total glutathione (GSH) efflux was studied in isolated rat hepatocyte suspensions at repleted GSH content (45-55 nmol/10(6) cells). The increase in concentrations of medium K+ in place of Na+ caused a parallel fall in membrane potential and total GSH efflux. Ouabain (1 mM) and replacement of Na+ with choline caused a gradual fall in membrane potential and GSH efflux. Hyperpolarization of hepatocytes with lipophilic anions, thiocyanate, and nitrate was associated with significantly increased efflux. Total GSH efflux was inhibited by increasing concentrations of fructose, antimycin A, and carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and there was a direct relationship between the rate of efflux and cellular ATP. Changes in total GSH efflux were paralleled by changes in GSH determined by high-performance liquid chromatography. Vanadate markedly inhibited efflux but caused only a modest decrease in cellular ATP. Fructose, antimycin A, and vanadate did not affect membrane potential or cell volume under the conditions at which efflux was inhibited. These results suggest independent requirements for both membrane potential and ATP in the transport of GSH.


1992 ◽  
Vol 288 (1) ◽  
pp. 207-213 ◽  
Author(s):  
J P Zoeteweij ◽  
B van de Water ◽  
H J de Bont ◽  
G J Mulder ◽  
J F Nagelkerke

Isolated rat hepatocytes were incubated with extracellular ATP to induce a prolonged increase in intracellular Ca2+ ([Ca2+]i) and a loss of viability within 2 h. By using video-intensified fluorescence microscopy, the effects of exposure to extracellular ATP on [Ca2+]i, mitochondrial membrane potential (MMP) and cell viability were determined simultaneously in individual living hepatocytes. The increase in [Ca2+]i on exposure to ATP was followed by a decreasing MMP; there were big differences between individual cells. Complete loss of the MMP occurred before cell death was observed. Omission of K+ from the incubation medium decreased the cytotoxicity of ATP; under these conditions, intracellular K+ was decreased by more than 80%. Treatment with nigericin also depleted intracellular K+ and decreased ATP-induced toxicity. Protection against loss of viability by means of a decrease in intracellular [K+] was reflected by maintenance of the MMP. These observations suggest that ATP-induced cell death may be caused by a mechanism that has been described for isolated mitochondria: after an increase in Ca2+ levels, a K+ influx into mitochondria is induced, which finally disrupts the MMP and leads to cell death.


1989 ◽  
Vol 260 (3) ◽  
pp. 821-827 ◽  
Author(s):  
A L Savage ◽  
M Biffen ◽  
B R Martin

We examined the effects of K+ substitution for Na+ on the response of hepatocytes to vasopressin, and on the hepatocyte plasma-membrane potential. (1) High K+ (114 mM) had no effect on the initial increase in phosphorylase a activity in response to vasopressin, but abolished the ability of the hormone to maintain increased activity beyond 10 min. With increasing concentrations a decrease in the vasopressin response was first observed at 30-50 mM-K+. (2) High K+ (114 mM) had no effect on basal 45Ca2+ influx, but abolished the ability of vasopressin to stimulate influx. This effect was also first observed at a concentration of 30-50 mM-K+. (3) Increasing K+ had little effect on the plasma-membrane potential until a concentration of 40 mM was reached. With further increases in concentration the plasma membrane was progressively depolarized. (4) Replacement of Na+ with N-methyl-D-glucamine+ depolarized the plasma membrane to a much smaller extent than did replacement with K+, and was also much less effective in inhibiting the vasopressin response. (5) The plasma-membrane potential was restored to near the control value by resuspending cells in normal-K+ medium after exposure to high-K+ medium. The effects of vasopressin on phosphorylase activity were also restored. (6) We conclude that the Ca2+ channels responsible for vasopressin-stimulated Ca2+ influx are closed by depolarization of the plasma membrane.


1979 ◽  
Vol 236 (1) ◽  
pp. C9-C14 ◽  
Author(s):  
T. Iga ◽  
D. L. Eaton ◽  
C. D. Klaassen

The mechanism responsible for the hepatic uptake of unconjugated bilirubin was examined in isolated rat hepatocytes from control and phenobartital-pretreated rats. The uptake was extremely rapid and the equilibrium between cell and medium was attained within 60 s with a 100-fold higher concentration in the cell than the medium. The initial velocity of uptake (Vo) exhibited a linear relationship to the bilirubin concentration in the medium. Pretreatment of cells with various metabolic inhibitors had no effect on the uptake of unconjugated bilirubin. Ouabain did significantly decrease Vo, but replacement of sodium ion with choline or lithium had no effect on bilirubin uptake. The organic acids sulfobromophthalein (112 muM) and taurocholic acid (50 (muM) and two steroidal compounds, diethylstilbestrol (50 muM) and spironolactone (50 muM), had no effect on the uptake of bilirubin. It is suggested that bilirubin gains access to the hepatocyte interior by passive diffusion into and through the lipid membrane and that intracellular binding may explain the high degree of bilirubin accumulation associated with the isolated hepatocytes.


1987 ◽  
Vol 243 (3) ◽  
pp. 655-660 ◽  
Author(s):  
P B Gordon ◽  
H Høyvik ◽  
P O Seglen

Measurements of sugar pinocytosis (fluid-phase endocytosis of radiolabelled sucrose, lactose and raffinose) in freshly isolated rat hepatocytes are disturbed by sugar diffusing into the cells through plasma-membrane blebs. Non-pinocytic entry may be even more pronounced at 0 degrees C, and is a major contributor to ‘background’ radioactivity. By electrodisruption of the plasma membrane, a distinction can be made between pinocytotically sequestered sugar and free sugar that has entered the cytosol by diffusion. Pinocytosis proceeds at a rate of 2%/h (relative to the intracellular fluid volume), whereas the rate of sucrose entry by diffusion is more than twice as high. Three pinocytotic compartments are distinguishable in isolated hepatocytes: (1) a rapidly recycling compartment, which is completely destroyed by electrodisruption, and which may represent pinocytic channels continuous with the plasma membrane; (2) a non-recycling (or very slowly recycling) electrodisruption-resistant compartment, which allows accumulation of the lysosomally hydrolysable sugar lactose, and which therefore must represent non-lysosomal vacuoles (endosomes?); (3) a lysosomal compartment (non-recycling, electrodisruption-resistant), which accumulates raffinose and sucrose, but which hydrolyses lactose. The last two compartments can be partially resolved in metrizamide/sucrose density gradients by the use of different sugar probes.


1980 ◽  
Vol 192 (1) ◽  
pp. 373-375 ◽  
Author(s):  
J D Craik ◽  
K R Elliott

Transport of D-fructose and D-galactose across the plasma membrane of isolated rat hepatocytes was followed for the net entry of sugars into sugar-free cells at 20 degrees C. Initial rates of transport showed a Michaelis-Menten dependency on sugar concentration, and transport was inhibited by 3-O-methyl-D-glucose in the external medium.


Sign in / Sign up

Export Citation Format

Share Document