Affinity chromatography studies with the pyruvate dehydrogenase complex of wild-type Escherichia coli

1978 ◽  
Vol 524 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Jaap Visser ◽  
Marijke Strating ◽  
Walter Van Dongen
2011 ◽  
Vol 77 (7) ◽  
pp. 2254-2263 ◽  
Author(s):  
Matthias Raberg ◽  
Jan Bechmann ◽  
Ulrike Brandt ◽  
Jonas Schlüter ◽  
Bianca Uischner ◽  
...  

ABSTRACTA previous study reported that the Tn5-induced poly(3-hydroxybutyric acid) (PHB)-leaky mutantRalstonia eutrophaH1482 showed a reduced PHB synthesis rate and significantly lower dihydrolipoamide dehydrogenase (DHLDH) activity than the wild-typeR. eutrophaH16 but similar growth behavior. Insertion of Tn5was localized in thepdhLgene encoding the DHLDH (E3 component) of the pyruvate dehydrogenase complex (PDHC). Taking advantage of the available genome sequence ofR. eutrophaH16, observations were verified and further detailed analyses and experiments were done.In silicogenome analysis revealed thatR. eutrophapossesses all five known types of 2-oxoacid multienzyme complexes and five DHLDH-coding genes. Of these DHLDHs, only PdhL harbors an amino-terminal lipoyl domain. Furthermore, insertion of Tn5inpdhLof mutant H1482 disrupted the carboxy-terminal dimerization domain, thereby causing synthesis of a truncated PdhL lacking this essential region, obviously leading to an inactive enzyme. The defined ΔpdhLdeletion mutant ofR. eutrophaexhibited the same phenotype as the Tn5mutant H1482; this excludes polar effects as the cause of the phenotype of the Tn5mutant H1482. However, insertion of Tn5or deletion ofpdhLdecreases DHLDH activity, probably negatively affecting PDHC activity, causing the mutant phenotype. Moreover, complementation experiments showed that different plasmid-encoded E3 components ofR. eutrophaH16 or of other bacteria, likeBurkholderia cepacia, were able to restore the wild-type phenotype at least partially. Interestingly, the E3 component ofB. cepaciapossesses an amino-terminal lipoyl domain, like the wild-type H16. A comparison of the proteomes of the wild-type H16 and of the mutant H1482 revealed striking differences and allowed us to reconstruct at least partially the impressive adaptations ofR. eutrophaH1482 to the loss of PdhL on the cellular level.


Sign in / Sign up

Export Citation Format

Share Document