lipoyl domain
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 1)

H-INDEX

23
(FIVE YEARS 1)

Author(s):  
Peter S J Bailey ◽  
Brian M Ortmann ◽  
Jack W Houghton ◽  
Ana S H Costa ◽  
Robin Antrobus ◽  
...  

Abstract2-oxoglutarate (2-OG or α-ketoglutarate) relates mitochondrial metabolism to cell function by modulating the activity of 2-OG dependent dioxygenases (2-OG DDs) involved in the hypoxia response and DNA/histone modifications. However, metabolic pathways that regulate these oxygen and 2-OG sensitive enzymes remain poorly understood. Here, using CRISPR Cas9 genome-wide mutagenesis to screen for genetic determinants of 2-OG levels, we uncover a redox sensitive mitochondrial lipoylation pathway, dependent on the mitochondrial hydrolase ABHD11, that signals changes in mitochondrial 2-OG metabolism to 2-OG DD function. ABHD11 loss or inhibition drives a rapid increase in 2-OG levels by impairing lipoylation of the 2-OG dehydrogenase complex (OGDHc) – the rate limiting step for mitochondrial 2-OG metabolism. Rather than facilitating lipoate conjugation, ABHD11 protects the catalytic lipoyl domain from lipid peroxidation products formed by oxidative damage, demonstrating a requirement for a lipoyl repair pathway in human cells, and highlighting how the redox sensitivity of lipoylation modulates 2-OG metabolism.


2018 ◽  
Author(s):  
Stefan Zdraljevic ◽  
Bennett W. Fox ◽  
Christine Strand ◽  
Oishika Panda ◽  
Francisco J. Tenjo ◽  
...  

AbstractWe find that variation in thedbt-1gene underlies natural differences inCaenorhabditis elegansresponses to the toxin arsenic. This gene encodes the E2 subunit of the branched-chain α-keto acid dehydrogenase (BCKDH) complex, a core component of branched-chain amino acid (BCAA) metabolism. We causally linked a non-synonymous variant in the conserved lipoyl domain of DBT-1 to differential arsenic responses. Using targeted metabolomics and chemical supplementation, we demonstrate that differences in responses to arsenic are caused by variation in iso-branched chain fatty acids. Additionally, we show that levels of branched chain fatty acids in human cells are perturbed by arsenic treatment. This finding has broad implications for arsenic toxicity and for arsenic-focused chemotherapeutics across human populations. Our study implicates the BCKDH complex and BCAA metabolism in arsenic responses, demonstrating the power ofC. elegansnatural genetic diversity to identify novel mechanisms by which environmental toxins affect organismal physiology.


2012 ◽  
Vol 449 (2) ◽  
pp. 415-425 ◽  
Author(s):  
Mareike G. Posner ◽  
Abhishek Upadhyay ◽  
Susan J. Crennell ◽  
Andrew J. A. Watson ◽  
Steve Dorus ◽  
...  

Lipoylation, the covalent attachment of lipoic acid to 2-oxoacid dehydrogenase multi-enzyme complexes, is essential for metabolism in aerobic bacteria and eukarya. In Escherichia coli, lipoylation is catalysed by LplA (lipoate protein ligase) or by LipA (lipoic acid synthetase) and LipB [lipoyl(octanoyl) transferase] combined. Whereas bacterial and eukaryotic LplAs comprise a single two-domain protein, archaeal LplA function typically involves two proteins, LplA-N and LplA-C. In the thermophilic archaeon Thermoplasma acidophilum, LplA-N and LplA-C are encoded by overlapping genes in inverted orientation (lpla-c is upstream of lpla-n). The T. acidophilum LplA-N structure is known, but the LplA-C structure is unknown and LplA-C's role in lipoylation is unclear. In the present study, we have determined the structures of the substrate-free LplA-N–LplA-C complex and E2lipD (dihydrolipoyl acyltransferase lipoyl domain) that is lipoylated by LplA-N–LplA-C, and carried out biochemical analyses of this archaeal lipoylation system. Our data reveal the following: (i) LplA-C is disordered but folds upon association with LplA-N; (ii) LplA-C induces a conformational change in LplA-N involving substantial shortening of a loop that could repress catalytic activity of isolated LplA-N; (iii) the adenylate-binding region of LplA-N–LplA-C includes two helices rather than the purely loop structure of varying order observed in other LplA structures; (iv) LplAN–LplA-C and E2lipD do not interact in the absence of substrate; (v) LplA-N–LplA-C undergoes a conformational change (the details of which are currently undetermined) during lipoylation; and (vi) LplA-N–LplA-C can utilize octanoic acid as well as lipoic acid as substrate. The elucidated functional inter-dependence of LplA-N and LplA-C is consistent with their evolutionary co-retention in archaeal genomes.


2011 ◽  
Vol 77 (7) ◽  
pp. 2254-2263 ◽  
Author(s):  
Matthias Raberg ◽  
Jan Bechmann ◽  
Ulrike Brandt ◽  
Jonas Schlüter ◽  
Bianca Uischner ◽  
...  

ABSTRACTA previous study reported that the Tn5-induced poly(3-hydroxybutyric acid) (PHB)-leaky mutantRalstonia eutrophaH1482 showed a reduced PHB synthesis rate and significantly lower dihydrolipoamide dehydrogenase (DHLDH) activity than the wild-typeR. eutrophaH16 but similar growth behavior. Insertion of Tn5was localized in thepdhLgene encoding the DHLDH (E3 component) of the pyruvate dehydrogenase complex (PDHC). Taking advantage of the available genome sequence ofR. eutrophaH16, observations were verified and further detailed analyses and experiments were done.In silicogenome analysis revealed thatR. eutrophapossesses all five known types of 2-oxoacid multienzyme complexes and five DHLDH-coding genes. Of these DHLDHs, only PdhL harbors an amino-terminal lipoyl domain. Furthermore, insertion of Tn5inpdhLof mutant H1482 disrupted the carboxy-terminal dimerization domain, thereby causing synthesis of a truncated PdhL lacking this essential region, obviously leading to an inactive enzyme. The defined ΔpdhLdeletion mutant ofR. eutrophaexhibited the same phenotype as the Tn5mutant H1482; this excludes polar effects as the cause of the phenotype of the Tn5mutant H1482. However, insertion of Tn5or deletion ofpdhLdecreases DHLDH activity, probably negatively affecting PDHC activity, causing the mutant phenotype. Moreover, complementation experiments showed that different plasmid-encoded E3 components ofR. eutrophaH16 or of other bacteria, likeBurkholderia cepacia, were able to restore the wild-type phenotype at least partially. Interestingly, the E3 component ofB. cepaciapossesses an amino-terminal lipoyl domain, like the wild-type H16. A comparison of the proteomes of the wild-type H16 and of the mutant H1482 revealed striking differences and allowed us to reconstruct at least partially the impressive adaptations ofR. eutrophaH1482 to the loss of PdhL on the cellular level.


Structure ◽  
2009 ◽  
Vol 17 (8) ◽  
pp. 1117-1127 ◽  
Author(s):  
Katherine M. Stott ◽  
Adlina M. Yusof ◽  
Richard N. Perham ◽  
D. Dafydd Jones

2007 ◽  
Vol 409 (2) ◽  
pp. 357-366 ◽  
Author(s):  
D. Dafydd Jones ◽  
Richard N. Perham

The lipoyl domain of the dihydrolipoyl succinyltransferase (E2o) component of the 2OGDH (2-oxoglutarate dehydrogenase) multienzyme complex houses the lipoic acid cofactor through covalent attachment to a specific lysine side chain residing at the tip of a β-turn. Residues within the lipoyl-lysine β-turn and a nearby prominent loop have been implicated as determinants of lipoyl domain structure and function. Protein engineering of the Escherichia coli E2o lipoyl domain (E2olip) revealed that removal of residues from the loop caused a major structural change in the protein, which rendered the domain incapable of reductive succinylation by 2-oxoglutarate decarboxylase (E1o) and reduced the lipoylation efficiency. Insertion of a new loop corresponding to that of the E. coli pyruvate dehydrogenase lipoyl domain (E2plip) restored lipoylation efficiency and the capacity to undergo reductive succinylation returned, albeit at a lower rate. Exchange of the E2olip loop sequence significantly improved the ability of the domain to be reductively acetylated by pyruvate decarboxylase (E1p), retaining approx. 10-fold more acetyl groups after 25 min than wild-type E2olip. Exchange of the β-turn residue on the N-terminal side of the E2o lipoyl-lysine DKA/V motif to the equivalent residue in E2plip (T42G), both singly and in conjunction with the loop exchange, reduced the ability of the domain to be reductively succinylated, but led to an increased capacity to be reductively acetylated by the non-cognate E1p. The T42G mutation also slightly enhanced the lipoylation rate of the domain. The surface loop is important to the structural integrity of the protein and together with Thr42 plays an important role in specifying the interaction of the lipoyl domain with its partner E1o in the E. coli 2OGDH complex.


Sign in / Sign up

Export Citation Format

Share Document