Phosphatidylinositol synthetase activities in neuronal nuclei and microsomal fractions isolated from immature rabbit cerebral cortex

Author(s):  
R.R. Baker ◽  
H.-y. Chang
1990 ◽  
Vol 68 (3) ◽  
pp. 641-647 ◽  
Author(s):  
R. Roy Baker ◽  
H.-Y. Chang

The acylation of 1-acyl-sn-glycero-3-phosphate to form phosphatidic acid was studied using a neuronal nuclear fraction N1 and microsomal fractions P3, R (rough), S (smooth), and P (neuronal microsomes from nerve cell bodies) isolated from cerebral cortices of 15-day-old rabbits. The assays contained this lysophospholipid, ATP, CoA, MgCl2, NaF, dithiothreitol, and radioactive palmitate, oleate, or arachidonate. Of the subfractions, N1 and R had the highest specific activities (expressed per micromole phospholipid in the fraction). The rates with oleate were two to four times the values seen for phosphatidic acid formation from sn-[3H]glycero-3-phosphate and oleoyl-CoA. Using oleate or palmitate, fraction R had superior specific rates to N1 at low lysophosphatidic acid concentrations. With increasing lysophospholipid concentrations the specific rates of N1 and R came closer together and maintained at least a twofold superiority over fraction P. Fraction S had the lowest specific rates of phosphatidic acid formation. Fractions N1, R, and P showed a preference for palmitate and oleate over arachidonate, particularly at low concentrations of lysophosphatidic acid. For N1 and R, the preference was also more marked at higher concentrations of fatty acid. Thus a selectivity for saturated and monounsaturated fatty acids was shown in the formation of phosphatidic acid, as was a concentration of acylating activity in the neuronal nucleus and the rough endoplasmic reticulum.Key words: 1-acyl-sn-glycero-3-phosphate, acylation, neuronal nuclei, microsomes, cerebral cortex.


1982 ◽  
Vol 60 (7) ◽  
pp. 724-733 ◽  
Author(s):  
R. Roy Baker ◽  
Huu-Yi Chang

A neuronal nuclear fraction (N1) and a microsomal fraction (P3) were isolated from homogenates of cerebral cortices of 15-day-old rabbits. A nuclear envelope fraction (E) was prepared from N1. To assay cholinephosphotransferase, diacylglycerols were first generated in the membranes of these subfractions using a phospholipase C (Bacillus cereus) preincubation. With levels of endogenous diacylglycerols producing maximal specific cholinephosphotransferase activities, an activity ratio of 1:1:5 was found for N1, P3, and E, respectively. An independent neuronal nuclear cholinephosphotransferase, concentrated in nuclear membranes, is indicated. With regard to changes in pH and concentrations of MgCl2 and CDP-choline, N1 and P3 activities responded in a similar manner. However, in contrast to P3, N1 activities were much more profoundly inhibited at low levels of Triton X-100 (0.01–0.02 w/v%) and N1 showed quite significant levels of cholinephosphotransferase activity in the absence of a phospholipase C preincubation. Choline phosphotransferase in N1 and P3 showed Km values for CDP-choline (0.028 and 0.031 mM, respectively) which were much lower than corresponding literature values determined using exogenous diacylglycerols as substrates for this enzyme. The presence of cholinephosphotransferase in neuronal nuclear membranes reflects a rather exceptional nuclear autonomy. This may be related to a need to maintain nuclear phospholipid in the absence of a well-developed endoplasmic reticulum at early stages of neuronal development or to synthesize phospholipid in response to functions unique to the nucleus.


1976 ◽  
Vol 104 (2) ◽  
pp. 401-406 ◽  
Author(s):  
Maura D. Spiker ◽  
Gene C. Palmer ◽  
Albert A. Manian

1986 ◽  
Vol 11 (8) ◽  
pp. 1217-1225 ◽  
Author(s):  
A. Cupello ◽  
F. Ferrillo ◽  
M. V. Rapallino ◽  
G. Rosadini

Sign in / Sign up

Export Citation Format

Share Document