The formation of phosphatidic acid de novo: a comparison of activities in neuronal nuclei and microsomes isolated from immature rabbit cerebral cortex

Author(s):  
R.R. Baker ◽  
H.-y. Chang
1990 ◽  
Vol 68 (3) ◽  
pp. 641-647 ◽  
Author(s):  
R. Roy Baker ◽  
H.-Y. Chang

The acylation of 1-acyl-sn-glycero-3-phosphate to form phosphatidic acid was studied using a neuronal nuclear fraction N1 and microsomal fractions P3, R (rough), S (smooth), and P (neuronal microsomes from nerve cell bodies) isolated from cerebral cortices of 15-day-old rabbits. The assays contained this lysophospholipid, ATP, CoA, MgCl2, NaF, dithiothreitol, and radioactive palmitate, oleate, or arachidonate. Of the subfractions, N1 and R had the highest specific activities (expressed per micromole phospholipid in the fraction). The rates with oleate were two to four times the values seen for phosphatidic acid formation from sn-[3H]glycero-3-phosphate and oleoyl-CoA. Using oleate or palmitate, fraction R had superior specific rates to N1 at low lysophosphatidic acid concentrations. With increasing lysophospholipid concentrations the specific rates of N1 and R came closer together and maintained at least a twofold superiority over fraction P. Fraction S had the lowest specific rates of phosphatidic acid formation. Fractions N1, R, and P showed a preference for palmitate and oleate over arachidonate, particularly at low concentrations of lysophosphatidic acid. For N1 and R, the preference was also more marked at higher concentrations of fatty acid. Thus a selectivity for saturated and monounsaturated fatty acids was shown in the formation of phosphatidic acid, as was a concentration of acylating activity in the neuronal nucleus and the rough endoplasmic reticulum.Key words: 1-acyl-sn-glycero-3-phosphate, acylation, neuronal nuclei, microsomes, cerebral cortex.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sheena Dass ◽  
Serena Shunmugam ◽  
Laurence Berry ◽  
Christophe-Sebastien Arnold ◽  
Nicholas J. Katris ◽  
...  

AbstractApicomplexa are obligate intracellular parasites responsible for major human diseases. Their intracellular survival relies on intense lipid synthesis, which fuels membrane biogenesis. Parasite lipids are generated as an essential combination of fatty acids scavenged from the host and de novo synthesized within the parasite apicoplast. The molecular and metabolic mechanisms allowing regulation and channeling of these fatty acid fluxes for intracellular parasite survival are currently unknown. Here, we identify an essential phosphatidic acid phosphatase in Toxoplasma gondii, TgLIPIN, as the central metabolic nexus responsible for controlled lipid synthesis sustaining parasite development. Lipidomics reveal that TgLIPIN controls the synthesis of diacylglycerol and levels of phosphatidic acid that regulates the fine balance of lipids between storage and membrane biogenesis. Using fluxomic approaches, we uncover the first parasite host-scavenged lipidome and show that TgLIPIN prevents parasite death by ‘lipotoxicity’ through effective channeling of host-scavenged fatty acids to storage triacylglycerols and membrane phospholipids.


2014 ◽  
Vol 14 (4) ◽  
pp. 418-420 ◽  
Author(s):  
Brandon A. Miller ◽  
David I. Bass ◽  
Joshua J. Chern

Arteriovenous malformations (AVMs) are typically considered congenital lesions, although there is growing evidence for de novo formation of these lesions as well. The authors present the case of an AVM in the same cerebral cortex that had been affected by a severe traumatic brain injury (TBI) more than 6 years earlier. To the best of the authors' knowledge, this is the first report attributing the formation of an AVM directly to TBI.


1982 ◽  
Vol 60 (7) ◽  
pp. 724-733 ◽  
Author(s):  
R. Roy Baker ◽  
Huu-Yi Chang

A neuronal nuclear fraction (N1) and a microsomal fraction (P3) were isolated from homogenates of cerebral cortices of 15-day-old rabbits. A nuclear envelope fraction (E) was prepared from N1. To assay cholinephosphotransferase, diacylglycerols were first generated in the membranes of these subfractions using a phospholipase C (Bacillus cereus) preincubation. With levels of endogenous diacylglycerols producing maximal specific cholinephosphotransferase activities, an activity ratio of 1:1:5 was found for N1, P3, and E, respectively. An independent neuronal nuclear cholinephosphotransferase, concentrated in nuclear membranes, is indicated. With regard to changes in pH and concentrations of MgCl2 and CDP-choline, N1 and P3 activities responded in a similar manner. However, in contrast to P3, N1 activities were much more profoundly inhibited at low levels of Triton X-100 (0.01–0.02 w/v%) and N1 showed quite significant levels of cholinephosphotransferase activity in the absence of a phospholipase C preincubation. Choline phosphotransferase in N1 and P3 showed Km values for CDP-choline (0.028 and 0.031 mM, respectively) which were much lower than corresponding literature values determined using exogenous diacylglycerols as substrates for this enzyme. The presence of cholinephosphotransferase in neuronal nuclear membranes reflects a rather exceptional nuclear autonomy. This may be related to a need to maintain nuclear phospholipid in the absence of a well-developed endoplasmic reticulum at early stages of neuronal development or to synthesize phospholipid in response to functions unique to the nucleus.


1976 ◽  
Vol 104 (2) ◽  
pp. 401-406 ◽  
Author(s):  
Maura D. Spiker ◽  
Gene C. Palmer ◽  
Albert A. Manian

Sign in / Sign up

Export Citation Format

Share Document