The activities of acyl-CoA hydrolase in lysate and subcellular fractions of human blood platelets in relation to activities of acyl-CoA:l-acyl-lysophospholipid acyltransferase

Author(s):  
Anne M. Bakken ◽  
Mikael Farstad ◽  
Harald Osmundsen
1981 ◽  
Vol 199 (3) ◽  
pp. 639-647 ◽  
Author(s):  
R K Berge ◽  
L E Hagen ◽  
M Farstad

The palmitoyl-CoA hydrolase activity, which in human blood platelets is mainly localized in the cytosol fraction [Berge, Vollset & Farstad (1980) Scand. J. Clin. Lab. Invest. 40, 271--279], was found to be extremely labile. Inclusion of glycerol or palmitoyl-CoA stabilized the activity during preparation. Gel-filtration studies revealed multiple forms of the enzyme with molecular weights corresponding to about 70 000, 40 000 and 24 000. The relative recovery of the mol.wt.-70 000 form was increased by the presence of 20% (v/v) glycerol or 10 microM-palmitoyl-CoA. The three enzyme forms are probably unrelated, since they were not interconvertible. The three different species of palmitoyl-CoA hydrolase were purified by DEAE-cellulose and hydroxyapatite chromatography, isoelectric focusing and high-pressure liquid chromatography (h.p.l.c.) to apparent homogeneity. The three enzymes had isoelectric points (pI) of 7.0, 6.1 and 4.9. The corresponding molecular weights were 27 000--33 000, 66 000--72 000 and 45 000--49 000, calculated from h.p.l.c. and Ultrogel AcA-44 chromatography. The apparently purified enzymes were unstable, as most of the activity was lost during purification. The enzyme with an apparent molecular weight of 45 000--49 000 was split into fractions with molecular weights of less than 10 000 by re-chromatography on h.p.l.c. concomitantly with a loss of activity. The stimulation of the activity by the presence of serum albumin seems to depend on the availability of palmitoyl-CoA, as has been reported for other palmitoyl-CoA hydrolases. [Berge & Farstad (1979) Eur. J. Biochem. 96, 393--401].


1972 ◽  
Vol 27 (01) ◽  
pp. 121-133 ◽  
Author(s):  
P Massini ◽  
E. F Lüscher

SummaryHuman blood platelets are aggregated by the basic polymers polylysine and DEAE- dextran. Under certain conditions a second phase of aggregation, concomitant with the release reaction, is elicited. The presence of ADP, calcium ions and a plasmatic cofactor within the primary aggregates are necessary for the induction of the release reaction. These experiments demonstrate that cell contact per se does not lead to a release reaction ; in order to become effective it must take place in the presence of ADP.


1968 ◽  
Vol 20 (03/04) ◽  
pp. 301-313 ◽  
Author(s):  
W Schneider ◽  
K Schumacher ◽  
B Thiede ◽  
R Gross

SummaryThe LDH-isoenzymes of human blood platelets show a distinct predominance of the isoenzymes 2 and 3 upon chromatography on DEAE-cellulose. Small amounts of LDH-1 are also present, while only traces of LDH-4 and -5 can be detected.Enzyme kinetic investigations of the principal isoenzymes LDH-1, -2 and -3 clearly show that the differences in inhibition constants with pyruvate as substrate which are demonstrable at 25° largely disappear at 37°. On the other hand, the differences among the isoenzymes in their affinity for pyruvate and lactate as substrate as well as in with respect to the optimal substrate concentrations of pyruvate are more marked at 37° than at 25°. Also, the type of inhibition found with lactate as substrate is increasingly the expression of a higher order reaction in going from LDH-1 to LDH-3. A dependence of the LDH distribution pattern upon the metabolism of the cell is discussed. A comparison of our results with thrombocytes with those of other workers with erythrocytes and leucocytes makes it unlikely that the LDH pattern is directly dependent upon the existence of an oxidative metabolism. Rather, the redox potential of the cell could be of importance for the nature of the pattern of isoenzymes and for their differing kinetic properties.


1986 ◽  
Vol 56 (03) ◽  
pp. 260-262 ◽  
Author(s):  
Isabella Roos ◽  
Fabrizia Ferracin ◽  
Alfred Pletscher

SummaryArginine-vasopressin (AVP) in the presence of Mg2+ but not in the absence of bivalent cations led to accumulation of [32P]-phosphatidic acid ([32P]-PA) in human blood platelets. Mg2+ also enhanced the specific binding of [3H]-AVP to intact platelets. The concentrations of the cation which enabled AVP to cause half maximal rise of [32P]-PA and those inducing half maximal [3H]-AVP-binding were of the same order. It is concluded that the stimulation of phosphatidyl inositide breakdown by AVP in presence of Mg2+ is at least partially due to a Mg2+-induced enhancement of specific AVP-binding to the platelet membranes.


Platelets ◽  
1999 ◽  
Vol 10 (2) ◽  
pp. 97-104 ◽  
Author(s):  
Ø. Berg ◽  
A. M. Bakken ◽  
S. K. Steinsvåg ◽  
M. Farstad

Sign in / Sign up

Export Citation Format

Share Document