In vitro stimulation of lecithin synthesis in rat liver mitochondria and microsomes after treatment with phospholipase C

1973 ◽  
Vol 55 (3) ◽  
pp. 568-573 ◽  
Author(s):  
B.C. van Schijndel ◽  
Anita Reitsema ◽  
G.L. Scherphof
1975 ◽  
Vol 53 (7) ◽  
pp. 784-795 ◽  
Author(s):  
W. C. McMurray

When isolated mitochondria or microsomes from rat liver were treated with phospholipase C, the incorporation of radioactive phospholipid precursors was markedly enhanced, presumably as a result of production of diglycerides by hydrolysis of endogenous phospholipids. Incorporation of CDP[14C]choline into lecithin in rat liver or BHK-21 mitochondria could be attributed to residual contamination from elements of the endoplasmic reticulum, with added diglycerides or with endogenous diglycerides produced by the phospholipase C treatment. A similar stimulation of [γ32P]ATP incorporation into phospholipids was observed with exogenous or endogenous diglycerides, but the mitochondrial diglyceride kinase in either case was also related to the degree of microsomal contaminants. It was concluded that previous studies showing negligible capacity of mitochondria for lecithin biosynthesis de novo were not explainable on the basis of limited accessibility of added diglycerides, and that formation of phosphatidic acid by diglyceride kinase was not of significance in rat liver mitochondria.


Author(s):  
E. A. Elfont ◽  
R. B. Tobin ◽  
D. G. Colton ◽  
M. A. Mehlman

Summary5,-5'-diphenyl-2-thiohydantoin (DPTH) is an effective inhibitor of thyroxine (T4) stimulation of α-glycerophosphate dehydrogenase in rat liver mitochondria. Because this finding indicated a possible tool for future study of the mode of action of thyroxine, the ultrastructural and biochemical effects of DPTH and/or thyroxine on rat liver mere investigated.Rats were fed either standard or DPTH (0.06%) diet for 30 days before T4 (250 ug/kg/day) was injected. Injection of T4 occurred daily for 10 days prior to sacrifice. After removal of the liver and kidneys, part of the tissue was frozen at -50°C for later biocheailcal analyses, while the rest was prefixed in buffered 3.5X glutaraldehyde (390 mOs) and post-fixed in buffered 1Z OsO4 (376 mOs). Tissues were embedded in Araldlte 502 and the sections examined in a Zeiss EM 9S.Hepatocytes from hyperthyroid rats (Fig. 2) demonstrated enlarged and more numerous mitochondria than those of controls (Fig. 1). Glycogen was almost totally absent from the cytoplasm of the T4-treated rats.


Blood ◽  
1976 ◽  
Vol 47 (6) ◽  
pp. 923-930 ◽  
Author(s):  
RA Gams ◽  
EM Ryel ◽  
F Ostroy

Abstract Protein-mediated B12 uptake by isolated rat liver mitochondria has been shown to be enhanced by plasma transcobalamin (TC-II) but not by salivary R binder in vitro. The process is enhanced by calcium and depends on active mitochondrial respiration. Following uptake, cyanocobalamin is converted to adenosyl and methylcobalamins and released from the mitochondria. TC-II appears to be required for both cellular and mitochondrial uptake of vitamin B12.


Sign in / Sign up

Export Citation Format

Share Document