Effects of epinephrine and the cyclic AMP phosphodiesterase inhibitor SQ 20009 on glucose and glycogen metabolism in skeletal muscle

1979 ◽  
Vol 28 (6) ◽  
pp. 807-813 ◽  
Author(s):  
Sandra Davidheiser ◽  
Ella S. Haugaard ◽  
Niels Haugaard
1974 ◽  
Vol 52 (6) ◽  
pp. 1063-1073 ◽  
Author(s):  
Yin-Tak Woo ◽  
J. F. Manery ◽  
E. E. Dryden

Using [14C]inosine and [3H]sorbitol, the effect of theophylline on inosine uptake was studied. Theophylline inhibited the intracellular uptake of inosine by isolated, frog skeletal muscle in a dose-dependent way. An inhibitory effect was also observed for the uptake of labelled adenosine, uridine, hypoxanthine, and adenine, but not for ribose. The inhibition was not readily reversible and was noncompetitive in nature. It was not secondary to the contracture of the muscle produced by the drug, because various treatments known to cause contracture had no effect on inosine transport. Also, papaverine (0.3 mM) significantly inhibited inosine transport without affecting the contractile properties of the muscle. Although theophylline is a cyclic AMP phosphodiesterase inhibitor, no relation could be found between inhibition of inosine uptake and cyclic AMP. N8,O2′-Dibutyryl cyclic AMP (1 mM) was ineffective. Though isoproterenol (10 μg/ml) increased the cyclic AMP concentrations in the muscle by 26-fold in the presence of theophylline and 3-fold in the absence of the drug, it did not influence inosine transport. Tracing the label into various intracellular nucleotides after incubation of the muscle with [14C]inosine suggested that theophylline inhibited inosine transport rather than inosine metabolism.


1984 ◽  
Vol 222 (1) ◽  
pp. 177-182 ◽  
Author(s):  
A V Wallace ◽  
C M Heyworth ◽  
M D Houslay

Glucagon (10nM) prevented insulin (10nM) from activating the plasma-membrane cyclic AMP phosphodiesterase. This effect of glucagon was abolished by either PIA [N6-(phenylisopropyl)adenosine] (100nM) or adenosine (10 microM). Neither PIA nor adenosine exerted any effect on the plasma-membrane cyclic AMP phosphodiesterase activity either alone or in combination with glucagon. Furthermore, PIA and adenosine did not potentiate the action of insulin in activating this enzyme. 2-Deoxy-adenosine (10 microM) was ineffective in mimicking the action of adenosine. The effect of PIA in preventing the blockade by glucagon of insulin's action was inhibited by low concentrations of theophylline. Half-maximal effects of PIA were elicited at around 6nM-PIA. It is suggested that adenosine is exerting its effects on this system through an R-type receptor. This receptor does not appear to be directly coupled to adenylate cyclase, however, as PIA did not affect either the activity of adenylate cyclase or intracellular cyclic AMP concentrations. Insulin's activation of the plasma-membrane cyclic AMP phosphodiesterase, in the presence of both glucagon and PIA, was augmented by increasing intracellular cyclic AMP concentrations with either dibutyryl cyclic AMP or the cyclic AMP phosphodiesterase inhibitor Ro-20-1724. PIA also inhibited the ability of glucagon to uncouple (desensitize) adenylate cyclase activity in intact hepatocytes. This occurred at a half-maximal concentration of around 3 microM-PIA. However, if insulin (10 nM) was also present in the incubation medium, PIA exerted its action at a much lower concentration, with a half-maximal effect occurring at around 4 nM.


FEBS Letters ◽  
1985 ◽  
Vol 192 (2) ◽  
pp. 179-183 ◽  
Author(s):  
Yasuteru Iijima ◽  
Fumio Nakagawa ◽  
Shuji Handa ◽  
Tomiichiro Oda ◽  
Atsushi Naito ◽  
...  

1991 ◽  
Vol 10 (9) ◽  
pp. 817-822 ◽  
Author(s):  
Hiromu K. Mishima ◽  
Yoshiaki Kiuchi ◽  
Tomihisa Yokoyama ◽  
Takashi Yasumoto ◽  
Mitsuo Yamazaki

Glycogen metabolism in mammalian skeletal muscle is controlled by a regulatory network in which six protein kinases, four protein phosphatases and several thermostable regulatory proteins determine the activation state of glycogen phosphorylase and glycogen synthase, the rate-limiting enzymes of this process. Thirteen phosphorylation sites are involved, twelve of which have been isolated and sequenced and shown to be phosphorylated in vivo . The effects of adrenalin and insulin on the state of phosphorylation of each site have been determined. The neural control of glycogen metabolism is mediated by calcium ions and involves phosphorylase kinase, and a specific calmodulin-dependent glycogen synthase kinase. The β-adrenergic control of the system is mediated by cyclic AMP, and involves the phosphorylation of phosphorylase kinase, glycogen synthase and inhibitor 1 by cyclic-AMP-dependent protein kinase. Inhibitor 1 is a specific inhibitor of protein phosphatase 1, the major phosphatase involved in the control of glycogen metabolism. The stimulation of glycogen synthesis by insulin results from the dephosphorylation of glycogen synthase at sites (3 a + 3 b + 3 c ), which are introduced by the enzyme glycogen synthase kinase 3. The structure, regulation and substrate specificities of the protein phosphatases involved in glycogen metabolism are reviewed. Protein phosphatase 1 can exist in an inactive form termed the Mg-ATP-dependent protein phosphatase, which consists of a complex between the catalytic subunit and a thermostable protein termed inhibitor 2. Activation of this complex is catalysed by glycogen synthase kinase 3. It involves the phosphorylation of inhibitor 2 and its dissociation from the catalytic subunit. Protein phosphatase 2A can be resolved into three forms by ion exchange chromatography. These species contain the same catalytic subunit and other subunits that may have a regulatory function. Protein phosphatase 2B is a Ca 2+ -dependent enzyme composed of two subunits, A and B. Its activity is increased tenfold by calmodulin, which interacts with the A-subunit. The B-subunit is a Ca 2+ -binding protein that is homologous with calmodulin. Its N-terminus contains the unusual myristyl blocking group, only found previously in the catalytic subunit of cyclic-AMP-dependent protein kinase. Protein phosphatase 2C is a Mg 2+ -dependent enzyme that accounts for a very small proportion of the glycogen synthase phosphatase activity in skeletal muscle. It is likely to be involved in the regulation of other metabolic processes in vivo such as cholesterol synthesis. Recent evidence suggests that many of the proteins involved in the control of glycogen metabolism have much wider roles, and that they participate in the neural and hormonal regulation of a variety of intracellular processes.


Sign in / Sign up

Export Citation Format

Share Document