Lipid peroxidation, phosphoinositide turnover and protein kinase C activation in human platelets treated with anthracyclines and their complexes with Fe(III)

1992 ◽  
Vol 43 (7) ◽  
pp. 1521-1527 ◽  
Author(s):  
P. Banfi ◽  
O. Parolini ◽  
C. Lanzi ◽  
R.A. Gambetta
1989 ◽  
Vol 75 (4) ◽  
pp. 358-361 ◽  
Author(s):  
Romolo A. Gambetta ◽  
Patrizia Banfi ◽  
Cinzia Lanzi ◽  
Annarita Franzi ◽  
Franco Zunino

Several doxorubicin analogues have been tested for their capacity to activate protein kinase C (PKC) and to induce lipid peroxidation in intact human platelets. Only doxorubicin and 4′-iodo-doxorubicin were able to induce lipid peroxidation and PKC activation the first beeing the most effective. N-acetyl-doxorubicin, N-trifluoroacetyl-doxorubicin-14-valerate (AD32) and doxorubicin-14-propionate were not effective on either event. This correlation supports that PKC activation in human platelets by doxorubicin is mediated by lipid peroxidation and suggests that the effect is specific for anthracyclines with a doxorubicin aglycone and a free charged amino group in the sugar moiety. The results stress the new action of anthracyclines, whose pharmacologic implications are presently under investigation on nucleated cells.


FEBS Letters ◽  
1985 ◽  
Vol 192 (1) ◽  
pp. 4-8 ◽  
Author(s):  
Kimihiko Sano ◽  
Hajime Nakamura ◽  
Tamotsu Matsuo ◽  
Yasuhiro Kawahara ◽  
Hisashi Fukuzaki ◽  
...  

1991 ◽  
Vol 278 (1) ◽  
pp. 75-80 ◽  
Author(s):  
M Romano ◽  
M Molino ◽  
C Cerletti

The activation of protein kinase C by endotoxic lipid A was observed with both intact platelets and in a cell-free system [Romano & Hawiger (1990) J. Biol. Chem. 265, 1765-1770]. We have now studied the action of lipid A on intracellular Ca2+ concentration ([Ca2+]i). Lipid A induced a concentration-dependent rise in [Ca2+]i in human platelets loaded with fura-2, which reached a maximum at 37.1 +/- 3.8 s (tmax). Maximum [Ca2+]i levels, observed at 30 microM lipid A, were 432 +/- 60 nM. EGTA (2 mM) or NiCl2 (1 mM) each decreased the lipid A-dependent elevation of [Ca2+]i by 50-60% without significant modification of tmax, but shortening the time for 50% recovery (t50) from greater than 400 s to 113.1 +/- 29.1 s and 54 +/- 2.1 s, respectively. Quenching of the fura-2 signal was also observed in lipid A-stimulated platelets resuspended with MnCl2 (1 mM), suggesting that both mobilization and external influx of Ca2+ occur. Intracellular Ca2+ mobilization depended on release from Ins(1,4,5)P3-sensitive stores, since Ins(1,4,5)P3 accumulation was detected in lipid A-activated platelets. Staurosporine, an inhibitor of protein kinase C, blocked the [Ca2+]i rise generated by lipid A in platelets [concn. giving 50% inhibition (IC50) = 0.1 microM], prolonging the tmax. to 54.7 +/- 5.1 s, but decreasing the t50 to 157.5 +/- 31.8 s. Staurosporine also suppressed InsP3 accumulation (IC50 = 0.15 microM). These results suggest that platelet activation by lipid A involves an interaction between [Ca2+]i elevation and protein kinase C activation.


1990 ◽  
Vol 64 (01) ◽  
pp. 165-171 ◽  
Author(s):  
Yukio Ozaki ◽  
Yuki Mastsumoto ◽  
Yutaka Yatomi ◽  
Masaaki Higashihara

SummaryProtein kinase C activation in human platelets has a modulatory role in maintaining intracellular pH (pHi), by adjusting pHi at a particular value (7.22). Changes in pHi induced by protein kinase C appeared to be dependent upon the difference between H+ efflux catalyzed by the Na+/H+ exchanger and H+ production. The pHi recovery after acid loading was significantly facilitated by protein kinase C activation. Analysis of the rate constant for pHi recovery suggested that the turnover rate or the apparent affinity of the Na+/H+ exchanger for H+ was increased. Protein kinase C also decreased the Km value of the Na+/H+ exchanger for extracellular Na+. Thus, it is suggested that the role of protein kinase C in platelet pHi regulation is dual, adjusting the pHi value at a certain setpoint on the one hand, and increasing the rate constant of the Na+/H+ exchanger on the other.


FEBS Letters ◽  
1995 ◽  
Vol 364 (1) ◽  
pp. 87-90 ◽  
Author(s):  
Fabio M. Pulcinelli ◽  
Barrie Ashby ◽  
Pier Paolo Gazzaniga ◽  
James L. Daniel

Sign in / Sign up

Export Citation Format

Share Document