Chemical investigations of the giant nerve fibers of the squid V. quaternary ammonium ions in axoplasm

1961 ◽  
Vol 50 (3) ◽  
pp. 555-564 ◽  
Author(s):  
Gottfried G.J. Deffner
1972 ◽  
Vol 59 (4) ◽  
pp. 388-400 ◽  
Author(s):  
Clay M. Armstrong ◽  
Bertil Hille

Quaternary ammonium ions were applied to the inside of single myelinated nerve fibers by diffusion from a cut end. The resulting block of potassium channels in the node of Ranvier was studied under voltage-clamp conditions. The results agree in almost all respects with similar studies by Armstrong of squid giant axons. With tetraethylammonium ion (TEA), pentyltriethylammonium ion (C5), or nonyltriethylammonium ion (C9) inside the node, potassium current during a depolarization begins to rise at the normal rate, reaches a peak, and then falls again. This unusual inactivation is more complete with C9 than with TEA. Larger depolarizations give more block. Thus the block of potassium channels grows with time and voltage during a depolarization. The block reverses with repolarization, but for C9 full reversal takes seconds at -75 mv. The reversal is faster in 120 mM KCl Ringer's and slower during a hyperpolarization to -125 mv. All of these effects contrast with the time and voltage-independent block of potassium, channels seen with external quaternary ammonium ions on the node of Ranvier. External TEA, C5, and C9 block without inactivation. The external quaternary ammonium ion receptor appears to be distinct from the inner one. Apparently the inner quaternary ammonium ion receptor can be reached only when the activation gate for potassium channels is open. We suggest that the inner receptor lies within the channel and that the channel is a pore with its activation gate near the axoplasmic end.


1968 ◽  
Vol 17 (5) ◽  
pp. 616-621 ◽  
Author(s):  
Hitoshi KOHARA ◽  
Nobuhiko ISHIBASHI ◽  
Akira YOSHIDA

1969 ◽  
Vol 4 (1) ◽  
pp. 17-24
Author(s):  
J. E. BREWER ◽  
L. G. E. BELL

Some aliphatic long-chain quaternary ammonium compounds and choline derivatives have been examined for their ability to induce pseudopodia from Amoeba proteus. The reaction involved in pseudopodium induction is believed to be between the quaternary nitrogen cations and polysaccharides on the cell surface. Not all of the carboxyl groups of the polysaccharide are involved in this reaction. The mechanism of pseudopodium induction is discussed in terms of changes in the surface charge and the permeability of the cell membrane.


Sign in / Sign up

Export Citation Format

Share Document