Penicillin decreases chloride conductance in crustacean muscle: a model for the epileptic neuron

1976 ◽  
Vol 107 (1) ◽  
pp. 85-103 ◽  
Author(s):  
B. Hochner ◽  
M.E. Spira ◽  
R. Werman
1981 ◽  
Vol 212 (2) ◽  
pp. 481-488 ◽  
Author(s):  
Chris Lingle ◽  
Eve Marder

1987 ◽  
Vol 76 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Yoshimi Ikemoto ◽  
Norio Akaike ◽  
Kyoichi Ono

1980 ◽  
Vol 58 (9) ◽  
pp. 999-1010 ◽  
Author(s):  
Peter C. Vaughan ◽  
James G. McLarnon ◽  
Donald D. F. Loo

Three-microelectrode voltage-clamp experiments have been conducted on surface fibres of Xenopus laevis sartorius muscles. When potassium and chloride were substituted by rubidium and sulphate, negligibly small currents were observed. In solutions containing rubidium and chloride at pH 8.4–8.8 normally polarized fibres exhibited instantaneous current–voltage relations that were linear over a wide voltage range. Chloride conductance varied widely from fibre to fibre; the mean resting conductance at −80 mV was 7.4 × 10−4 ± 2.6 × 10−4 S/cm2 (mean ± SE). When hyperpolarizing voltage steps were made, conductance declined from the initial to the steady state; inward currents saturated near 14 μA/cm2. In experiments performed on fibres depolarized by immersion in K+-and Rb+-rich solutions it was found that resting conductance did not increase by as much as would be expected from constant field – constant permeability precepts, by comparison with normally polarized fibres. Despite the low chloride transmembrane concentration ratio, rectification in the steady state was similar in depolarized and normally polarized fibres.When a two-pulse protocol was employed to test the availability of chloride conductance after conditioning of the system at some voltage, it was found that the test current, the initial current at the onset of the test voltage step, depended sigmoidally on the conditioning voltage. The sigmoid relationships had asymptotic limits: after hyperpolarizing conditioning the test current was minimal, after depolarizing conditioning, maximal. Normalized sigmoid relations were superimposable, whether from normally polarized or chronically depolarized cells.When the protocol was repeated using different test potentials and initial currents following a particular conditioning voltage were plotted against the test potential, families of straight lines were obtained. The slopes of the members of these families were dependent on the conditioning voltage: the more negative the conditioning step the lower the slope. The lines projected through a mutual intersection at a voltage slightly more positive than the resting potential. This is interpreted as indicating that there is some voltage, slightly positive with respect to the membrane potential, at which the initial current is independent of the conditioning voltage.It is concluded that the state of the chloride conductance mechanism is a function of the deviation of the membrane from the resting potential rather than of the absolute membrane potential and that relaxations from initial to steady states reflect properties of the permeation mechanism rather than accumulation or depletion of chloride in a confined space, although some contribution by a mechanism such as the latter cannot be completely ruled out.


Sign in / Sign up

Export Citation Format

Share Document