4-Aminopyridine activates a cholinergic chloride conductance in isolated Helix neurons

1987 ◽  
Vol 76 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Yoshimi Ikemoto ◽  
Norio Akaike ◽  
Kyoichi Ono
1991 ◽  
Vol 65 (6) ◽  
pp. 1517-1527 ◽  
Author(s):  
J. L. Yakel

1. The modulation of the voltage-activated Ca2+ current by the neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFa) was investigated in dissociated central neurons from Helix aspersa using whole-cell voltage-clamp recording techniques. External Ba2+ was always used as the charge carrier in this study, and the intracellular Ca2+ concentration was buffered to 20 nM with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). 2. Run-down of the Ca2+ currents was not a problem as long as the neurons were dialyzed with a patch electrode filling solution containing ATP (1 or 2 mM). In ATP-dialyzed neurons, the rate of inactivation of the calcium current increased with time without any significant change in the rate of activation. However, when neurons were dialyzed with guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S; 100 microM; with ATP), the rate of inactivation decreased with time. There was no effect of GTP gamma S on the rate of activation of the Ca2+ current. This suggests that guanosine 5'-triphosphate (GTP)-binding proteins (G proteins) are able to modulate the rate of inactivation of the Ca2+ current in Helix neurons. 3. FMRFa both decreased and enhanced the amplitude of the Ca2+ current in these neurons. This inhibition was observed in most neurons, while the enhancement was observed in 20% of the neurons. Although the enhancement usually was preceded by the inhibitory response, sometimes the enhancement was observed separately. 4. The FMRFa-induced inhibition of the Ca2+ current usually consisted of a decrease in both the amplitude and the rate of inactivation of this current, effects that were reduced as the membrane potential was stepped to more depolarized potentials. A pertussis toxin (PTX)-sensitive G protein mediated this response, whereas no evidence was found to suggest the involvement of any known intracellular messenger. Therefore this inhibition may have resulted from a direct coupling between the FMRFa receptor and the Ca2+ channels via a PTX-sensitive G protein. 5. Arachidonic acid (100 microM) irreversibly reduced the amplitude of the Ca2+ current, but it did not alter the relative inhibition of this current by FMRFa. 6. The FMRFa-induced enhancement of the Ca2+ current was difficult to study because it was observed infrequently, and was rarely observed independently of the FMRFa-induced inhibitory response. In addition, the ability of FMRFa to enhance this current usually disappeared with time.(ABSTRACT TRUNCATED AT 400 WORDS)


1985 ◽  
Vol 117 (3) ◽  
pp. 311-322 ◽  
Author(s):  
Maurice Gola ◽  
Christian Ducreux
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document