Zonisamide enhances slow sodium inactivation inMyxicola

1987 ◽  
Vol 413 (1) ◽  
pp. 185-188 ◽  
Author(s):  
C.L. Schauf
Keyword(s):  
1978 ◽  
Vol 76 (1) ◽  
pp. 221-235
Author(s):  
J. A. BENSON ◽  
J. E. TREHERNE

The giant axons of this extreme osmoconformer were adapted, in vitro, to progressive hyposmotic dilution of the bathing medium (from 1024 m-Osmol to concentrations as low as 76.8 m-Osmol). Hyposmotic adaptation is associated with reductions in the intracellular concentrations of both sodium and potassium ions. These reductions do not appear to result from appreciable axonal swelling. The different electrical responses to isosmotic and hyposmotic dilution suggest that reduction in [Na+]1 results from ouabain-dependent sodium extrusion, in response to ionic dilution, and that reduction in [K+]1 is induced by a combination of ionic and osmotic dilution. The reduced level of intracellular potassium achieved during hyposmotic adaptation represents a balance between the necessity to contribute to osmotic equilibration and to maintain a potassium gradient across the axon membrane sufficient to produce appreciable axonal hyperpolarization during dilution of the bathing medium. This hyperpolarization tends to maintain the amplitude of the action potential, by compensating for reduction in overshoot (with decline in ENa), and by reducing sodium inactivation. This, together with the reduction in [Na+]1, enables overshooting action potentials of relatively large amplitude and rapid rise time to be maintained during more than tenfold dilution of the ionic and osmotic concentration of the bathing medium.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Nicholas P. Charteris ◽  
Bradley J. Roth

Researchers have suggested that the fate of a shock-induced wave front at the edge of a “virtual anode” (a region hyperpolarized by the shock) is a key factor determining success or failure during defibrillation of the heart. In this paper, we use a simple one-dimensional computer model to examine propagation speed through a hyperpolarized region. Our goal is to test the hypothesis that rapid propagation through a virtual anode can cause failure of propagation at the edge of the virtual anode. The calculations support this hypothesis and suggest that the time constant of the sodium inactivation gate is an important parameter. These results may be significant in understanding the mechanism of the upper limit of vulnerability.


1983 ◽  
Vol 81 (2) ◽  
pp. 255-281 ◽  
Author(s):  
J A Dani ◽  
J A Sanchez ◽  
B Hille

The effects of external anions on gating of Na channels of frog skeletal muscle were studied under voltage clamp. Anions reversibly shift the voltage dependence of peak sodium permeability and of steady state sodium inactivation towards more negative potentials in the sequence: methanesulfonate less than or equal to Cl- less than or equal to acetate less than Br- less than or equal to NO-3 less than or equal to SO2-4 less than benzenesulfonate less than SCN- less than ClO-4; approximately the lyotropic sequence. Voltage shifts are graded with mole fraction in mixtures and are roughly additive to calcium shifts. The peak PNa is not greatly affected. Except for SO2-4, these anions did not change the Ca++ activity of the solutions as measured with the dye murexide. Shifts of gating can be explained as the electrostatic effect of anion adsorption to the Na channel or to nearby lipid. Such adsorption is expected to follow the lyotropic series. Anions also interfere significantly with the response of a Ca-sensitive membrane electrode following the same sequence of effectiveness as the shifts of gating. The lyotropic anions decrease the Ca++ sensitivity and cause anomalously negative responses of the Ca electrode because these anions are somewhat permeant in the hydrophobic detector membrane.


1968 ◽  
Vol 51 (2) ◽  
pp. 199-219 ◽  
Author(s):  
Bertil Hille

Voltage clamp measurements on myelinated nerve fibers show that tetrodotoxin, saxitoxin, and DDT specifically affect the sodium channels of the membrane. Tetrodotoxin and saxitoxin render the sodium channels impermeable to Na ions and to Li ions and probably prevent the opening of individual sodium channels when one toxin molecule binds to a channel. The apparent dissociation constant of the inhibitory complex is about 1 nM for the cationic forms of both toxins. The zwitter ionic forms are much less potent. On the other hand, DDT causes a fraction of the sodium channels that open during a depolarization to remain open for a longer time than is normal. The effect cannot be described as a specific change in sodium inactivation or as a specific change in sodium activation, for both processes continue to govern the opening of the sodium channels and neither process is able to close the channels. The effects of DDT are very similar to those of veratrine.


1980 ◽  
Vol 238 (3) ◽  
pp. C127-C132 ◽  
Author(s):  
R. Horn ◽  
M. S. Brodwick ◽  
D. C. Eaton

The effects of the protein cross-linking reagents glutaraldehyde, tannic acid, and formaldehyde were examined in voltage-clamped and internally perfused squid axons. All three reagents reduced sodium and potassium currents and reduced or abolished sodium inactivation. Glutaraldehyde and tannic acid produced an alteration of potassium current kinetics.


Sign in / Sign up

Export Citation Format

Share Document