Evidence for an enkephalinergic system in the nervous system of the pond snail,Lymnaea stagnalis

1990 ◽  
Vol 531 (1-2) ◽  
pp. 66-71 ◽  
Author(s):  
Michael K. Leung ◽  
Harry H. Boer ◽  
Jan van Minnen ◽  
Jonathan Lundy ◽  
George B. Stefano
1991 ◽  
Vol 279 (3) ◽  
pp. 837-842 ◽  
Author(s):  
P L Hordijk ◽  
H D F H Schallig ◽  
R H M Ebberink ◽  
M de Jong-Brink ◽  
J Joosse

In the pond snail Lymnaea stagnalis infected with the schistosome parasite Trichobilharzia ocellata, a peptide called schistosomin is released from the central nervous system, which counteracts the bioactivity of a number of gonadotropic hormones. This leads to inhibition of the reproductive activities of the infected snail. In order to determine the structure of schistosomin, the neuropeptide was purified from the central nervous system using gel-permeation chromatography and reverse-phase h.p.l.c. The complete primary structure of the peptide was determined by N-terminal sequencing and peptide mapping. Schistosomin is a single-chain molecule of 79 amino acids with a molecular mass of 8738 Da. The peptide contains eight cysteine residues which may give rise to four intramolecular disulphide bridges that fold the peptide into a stable globular structure. A database search did not reveal any known peptides that show significant sequence similarity to schistosomin. By means of immunocytochemistry, the peptide was shown to be localized in the growth-controlling neurosecretory light green cells, which are located in the cerebral ganglia of the central nervous system of Lymnaea. In addition to schistosomin, these neurons are known to produce various insulin-related peptides.


1998 ◽  
Vol 353 (1375) ◽  
pp. 1631-1643 ◽  
Author(s):  
Á Vehovszky ◽  
C. J. H. Elliott ◽  
E. E. Voronezhskaya ◽  
L. Hiripi ◽  
K. Elekes

The role of octopamine (OA) in the feeding system of the pond snail, Lymnaea stagnalis , was studied by applying behavioural tests on intact animals, and a combination of electrophysiological analysis and morphological labelling in the isolated central nervous system. OA antagonists phentolamine, demethylchlordimeform (DCDM) and 2–chloro–4–methyl–2–(phenylimino)–imidazolidine (NC–7) were injected into intact snails and the sucrose–induced feeding response of animals was monitored. Snails that received 25–50 mg kg -1 phentolamine did not start feeding in sucrose, and the same dose of NC–7 reduced the number of feeding animals by 80–90% 1–3 hours after injection. DCDM treatment reduced feeding by 20–60%. In addition, both phentolamine and NC–7 significantly decreased the feeding rate of those animals that still accepted food after 1–6 hours of injection. In the central nervous system a pair of buccal neurons was identified by electrophysiological and morphological criteria. After double labelling (intracellular staining with Lucifer yellow followed by OA–immunocytochemistry) these neurons were shown to be OA immunoreactive, and electrophysiological experiments confirmed that they are members of the buccal feeding system. Therefore the newly identified buccal neurons were called OC neurons (putative OA containing neurons or OAergic cells). Synchronous intracellular recordings demonstrated that the OC neurons share a common rhythm with feeding neurons either appearing spontaneously or evoked by intracellularly stimulated feeding interneurons. OC neurons also have synaptic connections with identified members of the feeding network: electrical coupling was demonstrated between OC neurons and members of the B4 cluster motoneurons, furthermore, chemically transmitted synaptic responses were recorded both on feeding motoneurons (B1, B2 cells) and the SO modulatory interneuron after the stimulation of OC neurons. However, elementary synaptic potentials could not be recorded on the follower cells of OC neurons. Prolonged (20 to 30 s) intracellular stimulation of OC cells activated the buccal feeding neurons leading to rhythmic activity pattern (fictive feeding) in a way similar to OA applied by perfusion onto isolated central nervous system (CNS) preparations. Our results suggest that OA acts as a modulatory substance in the feeding system of Lymnaea stagnalis and the newly identified pair of OC neurons belongs to the buccal feeding network.


2019 ◽  
Author(s):  
Brittany A. Mersman ◽  
Sonia N. Jolly ◽  
Zhenguo Lin ◽  
Fenglian Xu

AbstractConnections between neurons called synapses are the key components underlying all nervous system functions of animals and humans. However, important genetic information on the formation and plasticity of one type, the electrical (gap junction-mediated) synapse, is severely understudied, especially in invertebrates. In the present study, we set forth to identify and characterize the gap junction-encoding gene innexin in the central nervous system (CNS) of the mollusc pond snail Lymnaea stagnalis (L. stagnalis). With PCR, 3’ and 5’ RACE, and BLAST searches, we identified eight innexin genes in the L. stagnalis nervous system named Lst Inx1-8. Phylogenetic analysis revealed that the L. stagnalis innexin genes originated from a single copy in the common ancestor of molluscan species by multiple gene duplication events and have been maintained in L. stagnalis since they were generated. The paralogous innexin genes demonstrate distinct expression patterns among tissues. In addition, one paralog, Lst Inx1, exhibits heterogeneity in cells and ganglia, suggesting the occurrence of functional diversification after gene duplication. These results introduce possibilities to study an intriguing potential relationship between innexin paralog expression and cell-specific functional outputs such as heterogenic ability to form channels and exhibit synapse plasticity. The L. stagnalis CNS contains large neurons and a functionally defined network for behaviors; with the introduction of L. stagnalis in the gap junction field, we are providing novel opportunities to combine genetic research with direct investigation of functional outcomes at the cellular, synaptic, and behavioral levels.Summary StatementBy characterizing the gap junction gene innexin in Lymnaea stagnalis, we open opportunities for novel studies on the regulation, plasticity, and evolutionary function of electrical synapses throughout the animal kingdom.


Sign in / Sign up

Export Citation Format

Share Document